
CSE 579 Knowledge Representation and Reasoning (Spring 2017) ðJoohyung LeeCSE 579 Knowledge Representation and Reasoning (Spring 2017) ðJoohyung Lee 1

Statistical Relational Extension

of Answer Set Programming

@Reasoning Web School 2022
JoohyungLee

Global AI Center School of Computing and AI

Samsung Research Arizona State University

Combining Logic and Probability

ÅThe main goal of the representation in SRL is to express probabilistic models

in a compact way that reflects the relational structure of the domain, and

ideally supports efficient learning and inference.

ÅBLP, BLOG, PRM, MLN, PSL, ProbLog, RBN, RDN, . . .

ÅRelated to Neuro-symbolic AI

What the Tutorial is About

Answer Set Programs
(ASP)

Markov Logic Networks
(MLN)

LPMLN

[Lee & Wang, 2016]

LPMLN

ASP

MLN

ProbLogP-log

PCM

suitable for expressing various aspects
of knowledge

suitable for reasoning under
uncertainty

Relationship between LPMLNand several other
formalisms were established:
[Lee & Wang, 2016; Lee, Meng & Wang 2015;
Lee & Wang, 2015]

| ASP (Answer Set Programming) is a declarative programming

paradigm that is based on the stable model semantics

| ASP is effective and widely used on knowledge intensive

domains and combinatorial search problems

| However, the deterministic nature of ASP limits its application

in domains involving probability and inconsistencies

Answer Set Programming

| Declarative programming paradigm combining

- a rich yet simple modeling language

- with high-performance solving capacities

| ASP is useful for knowledge-intensive tasks and combinatorial search
problems

| ASP has its roots in

- logic programming

- knowledge representation

- constraint solving (in particular SAT)

- (deductive) databases

ASP = LP + KR + SAT + DB

Answer Set Programming

| Markov logic combines ýrst-order logic with Markov networks

| A Markov logic network consists of a set of weighted ýrst-

order formulas

| The probability of a world is proportional to the exponential of

the sum of the formulae that are true in the world

| The idea is to view logical formulas as soft constraints on the

set of possible worlds

Markov Logic

| Markov Logic

+ Uncertainty with knowledge base

- Based on classical first-order logic

Canôt handle inductive definition, causality, é

| ASP

+ Rich KR constructs (choice rules, aggregates, é)

+ Rule-based semantics

Can handle transitive closure, causality

- Does not handle (probabilistic) uncertainty well

Markov Logic vs. ASP

| A logic formalism with weighted rules under the stable model

semantics, following the log-linear models of Markov Logic

| It provides versatile methods to overcome the deterministic

nature of the stable model semantics, such as:

Resolving inconsistencies in answer set programs

Define ranking/probability distribution over stable models

Apply methods from machine learning to compute KR formalisms

LPMLN

LPMLN

ÅA simple approach to combining answer set programming (ASP) and
MarkdovLogic (MLN)

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

Problem Solving

Problem Solution

OutputComputer

ά²Ƙŀǘ ƛǎ ǘƘŜ ǇǊƻōƭŜƳΚέάIƻǿ ǘƻ ǎƻƭǾŜ ǘƘŜ ǇǊƻōƭŜƳΚέversus

Traditional Programming

Problem Solution

OutputProgram

ά²Ƙŀǘ ƛǎ ǘƘŜ ǇǊƻōƭŜƳΚέάIƻǿ ǘƻ ǎƻƭǾŜ ǘƘŜ ǇǊƻōƭŜƳΚέversus

Programming

Executing

Interpreting

Declarative Programming

Problem Solution

OutputRepresentation

ά²Ƙŀǘ ƛǎ ǘƘŜ ǇǊƻōƭŜƳΚέάIƻǿ ǘƻ ǎƻƭǾŜ ǘƘŜ ǇǊƻōƭŜƳΚέversus

Modeling

Solving

Interpreting

| Declarative programming paradigm suitable for knowledge
intensive and combinatorial search problems

| Theoretical basis: stable model semantics (Gelfond and Lifschitz,
1988)

| Expressive representation language

- defaults

- negation as failure

- recursive definitions

- aggregates

- preferences

- etc.

What is Answer Set Programming

| ASP solvers
- smodels (Helsinki University of Technology, 1996)

- dlv (Vienna University of Technology, 1997)

- cmodels (University of Texas at Austin, 2002)

- pbmodels (University of Kentucky, 2005)

- Clasp/clingo (University of Potsdam, 2006) ïwinning several first places at
ASP, SAT, Max-SAT, PB, CADE competitions

- Wasp (University of Cabria, 2013)

- dlv-hex for computing HEX programs

- oClingo for reactive answer set programming

- é

| ASP Core 2: Standard language

What is Answer Set Programming, contôd

Declarative Problem Solving using ASP

Problem Solution

OutputASP Program

Modeling

Solving
using ASP Solver

Interpreting

| The basic idea is

- to present the given problem by a set of rules,

- to find answer sets for the program using an ASP solver,

- and to extract the solutions from the answer sets.

No two queens can share the same row,
column, or diagonal

N-Queens Puzzle

n # sol

3 none

4 2

5 20

6 4

7 40

8 92

a b c d e f g h

a b c d e f g h

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

No two queens can share the same row,
column, or diagonal

N-Queens Puzzle, contôd

% Each row has exactly one queen

1 {queen(R,1..n)} 1 : - R=1..n.

% No two queens are on the same column

: - queen(R1,C), queen(R2,C), R1!=R2.

% No two queens are on the same diagonal

: - queen(R1,C1), queen(R2,C2), R1!=R2, |R1 - R2|=|C1 - C2|.

a b c d e f g h

a b c d e f g h

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

Finding One Solution for the 8-Queens Puzzle

$ clingo queens.lp - c n=8

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)

queen(3,7) queen(5,8)

SATISFIABLE

Models : 1+

Calls : 1

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat : 0.00s)

CPU Time : 0.004s

Finding All Solutions for the 8-Queens Puzzle

$ clingo queens.lp - c n=8 0

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)

queen(3,7) queen(5,8)

Answer: 2

[[truncated]]

Answer: 92

queen(5,1) queen(1,2) queen(8,3) queen(4,4) queen(2,5) queen(7,6)

queen(3,7) queen(6,8)

SATISFIABLE

Models : 92

Calls : 1

Time : 0.011s (Solving: 0.01s 1st Model: 0.00s Unsat : 0.00s)

CPU Time : 0.010s

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

Stable Model Semantics

| We consider rules as the restricted form of formulas in which implications occur in
a limited way.

- We write ὊᴺὋto denote ὋᴼὊ

| A (propositional) rule is a formula of the form ὊᴺὋwhere Ὂand Ὃare implication-
free (ṶȟṴȟȟ᷈ ȟ᷉ are allowed in ╕and ╖

- We often write ὊᴺṴ simply as Ὂ

| Example: Is each of the following a propositional rule?

- ὴN ή᷉ ὶ

- ὴO ήO ὶ

- ὴ᷉ ή᷈ ὶ

| A propositional program is a set of propositional rules.

Syntax of Propositional Rules

| We identify an interpretation with the set of

atoms that are true in it.

- Example: interpretations of signature ὴȟή

- Example: for signature ὴȟή, the formula ὴ᷉ ήhas

three models:

Representing Interpretations as Sets

| About a model Ὅof a formula Ὂ, we say that it is

minimal if no other model of Ὂis a subset of Ὅ.

- Example: FÏÒÓÉÇÎÁÔÕÒÅὴȟή, the formula ὴ᷉ ήhas three

models: ὴȟήȟὴȟή.

- The minimal models are

Å ὴὥὲὨή

| Exercise: FÉÎÄÁÌÌÍÉÎÉÍÁÌÍÏÄÅÌÓÏÆÔÈÅÐÒÏÇÒÁÍ

ὴᴺ ήȟ ή᷉ὶȢ

Minimal Models: Definition

| Statement: If two formulas are equivalent

under propositional logic, then they have the

same minimal models.

| Question: Is the converse true, that two

formulas having the same minimal models

are equivalent?

Minimal Models: A Question

Informal Reading: Rationality Principle

| Informally, program Ʉcan be

viewed as a specification for

stable modelsðsets of beliefs

that could be held by a rational

reasoner associate with Ʉ.

Informal Reading: Rationality Principle, contôd

| Stable models will be represented by

collections of atoms. In forming such sets

the reasoner must be guided by the

following informal principles:

- Satisfy the rules of Ʉ. In other words, if one

believes in the body of a rule, one must also

believe in its head.

- Adhere to the ñthe rationality principle,ò which

says, ñBelieve nothing you are not forced to

believe.

Stable Models of Programs with Negation

Prolog does not terminate on

query p or q

?- p.

ERROR: Out of local stack

Exception: (729,178)

Prolog vs. ASP

clingo returns

Answer: 1

p

Answer: 2

Q

Finite ASP programs are

guaranteed to terminate

p : - not q

q : - not p

| Q: How do we extend the definition of a stable model in the

presence of negation?

| Add r to the model if p is included under the condition that s is

not included in the model and will not be included in the future.

Negation as Failure

| Informally, program Ʉcan be viewed as a speciýcation for stable models--sets of

beliefs that could be held by a rational reasoner associated with Ʉ.

| Stable models will be represented by collections of atoms.

| In forming such sets the reasoner must be guided by the following informal

principles:

- Satisfy the rules of Ʉ.

Å If one believes in the body of a rule, one must also believe in its head.

- Adhere to the ñthe rationality principle.ò

Å ñBelieve nothing you are not forced to believe.ò

Informal Reading: Rationality Principle

| A critical part of a propositional rule is a subformula of its
head or body that begins with negation but is not part of
another subformula that begins with negation.

| Example: Find the critical parts of the formulas

- Ò ᴺ Ð ᷈ Ó

- Ð ᴺ Ñ ᷈ Ò

- ὴN ὴ

- ὴ᷉ ὴ

Critical Part

| The reductɩ of ɩrelative to an

interpretation ὢis the positive

propositional program obtained

from ɩby replacing each critical

part Ὄof each of its rules

- by Ṵif ὢÓÁÔÉÓǢÅÓ ὌȠ

- ÂÙ Ṷ ÏÔÈÅÒ×ÉÓÅ

Stable Models of Programs with Negation

| ὢis a stable model of ɩIf ὢis a

minimal model of the reductɩ

| Example:

ɜ ɜ ȟȟ ɜ ȟ ɜ ȟȟ

Given a propositional program ɩ

1. Guess an interpretation X

2. Find the reduct of ɩrelative to X (i.e., ɩ

3. Check if X is a minimal model of ɩ (note that ɩ is a positive

program; has no negation)

a. If yes, conclude X is a stable model of ɩ

b. If no, conclude X is not a stable model of ɩ

Steps to Find Stable Models (Succinct)

Given a propositional program ɩ

1. Guess an interpretation X

2. Find the reduct of ɩrelative to X (i.e., ɩ

3. Check if X satisfies ɩ (Alternatively, check if X satisfies ɩ)

a. If yes, continue

b. If no, conclude X is not a stable model of ɩ

4. Check if no other interpretation that is smaller than X satisfies
ɩ . I.e., for each interpretation Y that is smaller than X,

a. If Y satisfies ɩ , conclude X is not a stable model of ɩ

b. Else continue

5. Conclude X is a stable model of ɩ

Steps to Find Stable Models (Verbose)

ÅEvery stable model is a
model.

ÅThe red part ŎŀƴΩǘ ōŜ

replaced with ɩ.

NOTES:

| Equivalent propositional programs can have different

stable models.

| Example:

ὴN ήȟήN ὴ, ὴ᷉ή

ὴ᷉ ὴandή᷉ ή

Classical Equivalence vs. Stable Models

