
A New Perspective on Stable Models∗

Paolo Ferraris1, Joohyung Lee2 and Vladimir Lifschitz 1

1Department of Computer Sciences 2Dept. of Computer Science and Engineering
University of Texas at Austin Arizona State University
1 University Station C0500 Tempe, AZ 85281

Austin, TX 78705 joolee@asu.edu
{otto,vl}@cs.utexas.edu

Abstract

The definition of a stable model has provided a
declarative semantics for Prolog programs with
negation as failure and has led to the development
of answer set programming. In this paper we pro-
pose a new definition of that concept, which covers
many constructs used in answer set programming
(including disjunctive rules, choice rules and con-
ditional literals) and, unlike the original definition,
refers neither to grounding nor to fixpoints. Rather,
it is based on a syntactic transformation, which
turns a logic program into a formula of second-
order logic that is similar to the formula familiar
from the definition of circumscription.

1 Introduction
Two widely used definitions of the semantics of logic
programs—in terms of program completion[Clark, 1978]
and in terms of stable models[Gelfond and Lifschitz,
1988]—look very different from each other. The former treats
a logic program as shorthand for its completion, which is a
first-order formula. For instance, the program

p(a),
q(b),
r(x)← p(x), not q(x)

(1)

is shorthand for

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b)
∧∀x(r(x) ↔ (p(x) ∧ ¬q(x))).

(2)

On the other hand, according to the stable model seman-
tics, (1) is shorthand for the set of the ground instances of
its rules:

p(a),
q(b),
r(a)← p(a), not q(a),
r(b)← p(b), not q(b).

(3)

The definition of a stable model describes a fixpoint construc-
tion that determines which sets of atomic formulas from (3)

∗The first and third authors were partially supported by the Na-
tional Science Foundation under Grant IIS-0412907. The second
author was partially supported by DTO AQUAINT.

are considered “stable models”; it turns out that the only sta-
ble model of (3) is

{p(a), q(b), r(a)}. (4)

In spite of this difference between the two definitions, there
is often a close relationship between the completion of a pro-
gram and its stable models. For instance, in every model
of (2) (in the sense of first-order logic) that satisfies the unique
names assumptiona 6= b, the elements of set (4) are true, and
all other ground atoms are false.

Practical needs of answer set programming (ASP) have
led to the invention of several declarative programming con-
structs that are not used in Prolog. Clark’s completion seman-
tics is not applicable to these constructs, at least directly. For
instance, the last rule of the program

p(a),
p(b),
{q(x) : p(x)}

(5)

is a “choice rule” containing a “conditional literal”[Simons
et al., 2002]. Intuitively, this rule says: for anyx such that
p(x), choose arbitrarily whether or not to includeq(x) in the
stable model. The semantics of programs with choice rules,
like the original stable model semantics, is defined in termsof
grounding and a fixpoint condition. For instance, grounding
turns the last line of (5) into the ground choice rule

{q(a), q(b)}.

As it turns out, program (5) has 4 stable models:

{p(a), p(b)},
{p(a), p(b), q(a)},
{p(a), p(b), q(b)},
{p(a), p(b), q(a), q(b)}.

(6)

In this paper we propose a new definition of a stable model,
which covers many constructs used in ASP (including dis-
junctive rules, choice rules, cardinality constraints andcondi-
tional literals) and refers neither to grounding nor to fixpoints.
Rather, like the definition of program completion, the new
definition of a stable model is based on a transformation that
turns the given logic program into a formula of classical logic.
To be precise, the result of this transformation is asecond-
order formula, which looks similar to the formula famil-
iar from the definition of circumscription[McCarthy, 1980;
1986] in the form adopted in[Lifschitz, 1994].

The new definition and examples of its use are discussed
in Section 2 below. In Section 3 we relate our definition
to a theorem from[Lin, 1991], to the encoding of proposi-
tional logic programs by quantified Boolean formulas due to
Pearce, Tompits and Woltran [2001],1 and to recent research
on first-order equilibrium logic[Pearce and Valverde, 2004;
2005]. A theorem about strong equivalence, illustrating the
nature of the ongoing work on reformulating the theory of
stable models on the basis of the new definition, is stated in
Section 4. Finally, in Section 5 we propose a way to gener-
alize the concept of program completion that is similar to the
new definition of a stable model.

Our treatment of stable models may be of interest for three
reasons. First, it provides a new perspective on the place
of stable models within the field of nonmonotonic reason-
ing. We can distinguish between “translational” nonmono-
tonic formalisms, such as program completion and circum-
scription, and “fixpoint” formalisms—default logic[Reiter,
1980]2 and autoepistemic logic[Moore, 1985]. In the past,
stable models were seen as part of the “fixpoint tradition.”
In fact, the invention of stable models was an outgrowth of
earlier work on the relationship between logic programming
and autoepistemic logic[Gelfond, 1987]; the first journal pa-
per on answer sets[Gelfond and Lifschitz, 1991] emphasized
their relation to default logic. The remarkable similaritybe-
tween the new definition of a stable model and the definition
of circumscription is rather curious from this point of view.

Second, we expect that the new definition of stable mod-
els will provide a unified framework for useful answer set
programming constructs defined and implemented by sev-
eral different research groups, such as choice rules, cardinal-
ity constraints and conditional literals (Helsinki University of
Technology), disjunctive rules and aggregates[Faberet al.,
2004] (Vienna University of Technology and University of
Calabria), and ASET-Prolog constructs[Gelfond, 2002, Sec-
tion 5.2] (Texas Tech University).

Finally, we hope that this definition of a stable model will
serve as a basis for a new approach to proving program cor-
rectness in ASP, which will be more straightforward than
the one based on grounding and fixpoint definitions[Ferraris
and Lifschitz, 2005a, Sections 3.3–3.5, 3.7]. These correct-
ness proofs will use equivalent transformations of formulas
of classical logic as the main tool.

2 Definition and Examples

2.1 Logic Programs as First-Order Formulas

The concept of a stable model will be defined here for first-
order sentences (formulas without free variables); logic pro-
grams are viewed in this paper as alternative notation for first-

1The fact that circumscription is related to program completion
has been known for a long time[Reiter, 1982; Lifschitz, 1985].
The relationship between circumscription and the Pearce-Tompits-
Woltran transformation is discussed in[Ferrariset al., 2006, Ap-
pendix B].

2The translational definition of default logic, proposed in[Lif-
schitz, 1990], is rather complicated: it usesthird-ordervariables.

order sentences of special kinds.3

To rewrite a “traditional” program, such as (1), as a first-
order sentence, we

• replace every comma by∧ and everynot by¬ ,

• turn every ruleHead← Bodyinto a formula by rewrit-
ing it as the implicationBody→ Head, and

• form the conjunction of the universal closures of these
formulas.

For instance, we think of (1) as alternative notation for the
sentence

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)). (7)

We are going to treat¬F as shorthand forF → ⊥, so that the
last conjunctive term can be further expanded into

∀x((p(x) ∧ (q(x)→ ⊥))→ r(x)).

In the spirit of[Ferraris and Lifschitz, 2005b], (5) is under-
stood as

p(a) ∧ p(b) ∧ ∀x(p(x)→ (q(x) ∨ ¬q(x))). (8)

Since the last conjunctive term is logically valid, the class
of models of formula (8) would not change if we dropped
that term; but the class of itsstablemodels, as defined below,
would be affected. In this sense, the last conjunctive term is
essential.

Finally, here is an example of turning a cardinality con-
straint [Simonset al., 2002] into a first-order formula. The
rule

p← 10 {q(x) : r(x)} 20

corresponds to the sentence

(∃10x(q(x) ∧ r(x)) ∧ ¬∃21x(q(x) ∧ r(x))) → p, (9)

where∃nxF (x) is understood as an abbreviation for

∃x1 · · ·xn

∧

1≤i≤n

F (xi) ∧
∧

1≤i<j≤n

xi 6= xj

 .

2.2 Review of Circumscription
Since the new definition of a stable model looks similar to
the definition of circumscription, we will begin with a brief
review of the latter, for the special case when all predicate
constants occurring in the formula are circumscribed in par-
allel [Lifschitz, 1994, Section 7.1].

Both definitions use the following notation. Ifp andq are
predicate constants of the same arity thenp = q stands for
the formula

∀x(p(x)↔ q(x)),

3In the propositional case, this approach to the syntax of ASPis
not new. The possibility of interpreting choice rules and weight con-
straints in terms of nested conjunctions, disjunctions andnegations
was demonstrated in[Ferraris and Lifschitz, 2005b, Section 4.1].
General aggregates can be described in terms of nested implications
[Ferraris, 2005, Section 4]. Including second (“strong,” “classical,”
or “true”) negation without introducing an additional connective is
discussed in[Ferraris and Lifschitz, 2005a, Section 3.9].

andp ≤ q stands for

∀x(p(x)→ q(x)),

wherex is a tuple of distinct object variables. Ifp andq are
tuplesp1, . . . , pn andq1, . . . , qn of predicate constants then
p = q stands for the conjunction

p1 = q1 ∧ · · · ∧ pn = qn,

andp ≤ q for

p1 ≤ q1 ∧ · · · ∧ pn ≤ qn.

Finally,p < q is an abbreviation forp ≤ q ∧ ¬(p = q).
In second-order logic, we will apply the same notation to

tuples of predicate variables.
Given a first-order sentenceF , by CIRC[F] we denote the

second-order sentence

F ∧ ¬∃u((u < p) ∧ F (u)),

wherep stands for the list of all predicate constants occur-
ring in F , u is a list of distinct predicate variables of the same
length, andF (u) is the formula obtained fromF by substitut-
ing the variablesu for the constantsp. Intuitively, the second
conjunctive term of CIRC[F] expresses that the extents of the
predicatesp are minimal subject to conditionF .

For example, ifF is

p(a) ∧ ∀x(p(x)→ q(x)) (10)

then CIRC[F] is

p(a) ∧ ∀x(p(x)→ q(x))
∧¬∃uv(((u, v) < (p, q)) ∧ u(a) ∧ ∀x(u(x)→ v(x))).

(11)
Using methods for eliminating second-order quantifiers dis-
cussed in[Lifschitz, 1994] and[Dohertyet al., 1997], we can
simplify (11) and convert it into

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = a). (12)

There are cases when CIRC[F] is not equivalent to any
first-order formula, as, for instance, whenF is

p(a) ∧ ∀x(p(x)→ p(f(x))). (13)

In this example, a model of CIRC[F] is any interpreta-
tion that representsp as the set of the values of the terms
a, f(a), f(f(a)),

2.3 Stable Models
Given a first-order sentenceF , by SM[F] we denote the
second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where p stands for the list of all predicate constants
p1, . . . , pn occurring inF , u is a list ofn distinct predicate
variablesu1, . . . , un, andF ∗(u) is defined recursively:

• pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);

• (t1 = t2)
∗ = (t1 = t2);

• ⊥∗ = ⊥;

• (F �G)∗ = F ∗ �G∗, where� ∈ {∧,∨};

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (QxF)∗ = QxF ∗, whereQ ∈ {∀, ∃}.

Note that the operatorF 7→ F ∗(u) replaces each predicate
constant with the corresponding predicate variable, and that
it commutes with all propositional connectives except impli-
cation and with both quantifiers. If, in the definition of this
operator, we drop the second conjunctive term in the clause
for implication, thenF ∗(u) will turn into the formulaF (u)
referred to in the definition of circumscription. That con-
junctive term is the only difference between the definitions
of CIRC and SM.

A model ofF is stableif it satisfies SM[F].

Example 1 If F is (10) thenF ∗(u, v) is

u(a) ∧ ∀x((u(x)→ v(x)) ∧ (p(x)→ q(x)))

and SM[F] is

p(a) ∧ ∀x(p(x)→ q(x))
∧¬∃uv(((u, v) < (p, q)) ∧ u(a) ∧ ∀x((u(x)→ v(x))

∧(p(x)→ q(x)))).

It is clear that this formula is equivalent to (11), and conse-
quently to (12).

In logic programming notation, (10) can be written as

p(a),
q(x)← p(x).

The completion of this program

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ p(x))

is equivalent to (12) as well. In this example, all three
transformations—SM, CIRC and completion—produce es-
sentially the same result.

Example 2 If F is (13) then, as in the previous example, it is
clear that SM[F] is equivalent to CIRC[F]. Consequently, the
stable models of (13) can be characterized by the condition
stated at the end of the previous section:p is represented by
the set of the values of the termsa, f(a), f(f(a)),

In logic programming notation, (13) can be written as

p(a),
p(f(x))← p(x).

(14)

The completion of this program

∀x(p(x)↔ (x = a ∨ ∃y(x = f(y) ∧ p(y)))

is weaker than SM[F]: some (non-Herbrand4) models of the
completion of (14) are not stable.

It is easy to see that the operator SM produces essentially
the same result as CIRC whenever it is applied to a for-
mula corresponding to a set of Horn rules, as in the examples

4An Herbrand interpretationof a signatureσ containing at least
one object constant is an interpretation such that (i) its universe is the
set of all ground terms ofσ, and (ii) every ground term represents
itself. Clearly, an Herbrand interpretation can be characterized by
the set of ground atoms to which it assigns the valuetrue.

above.5 But if negation in the bodies of rules is allowed then
this may be no longer the case, as we will see Section 2.4.

What we can say, on the other hand, about this more gen-
eral case is that stableHerbrandmodels of the corresponding
formula exactly correspond to the stable models of the pro-
gram in the sense of the original definition from[Gelfond and
Lifschitz, 1988]:

Proposition 1 Let σ be a signature containing at least one
object constant, andΠ a finite set of rules of the form

A0 ← A1, . . . , Am, notAm+1, . . . , notAn, (15)

whereA0, . . . , An are atomic formulas ofσ not containing
equality. For any setX of ground terms ofσ, the following
conditions are equivalent:

• X is a stable model ofΠ in the sense of the 1988 defini-
tion;

• the Herbrand interpretation ofσ that makes the elements
of X true and all other ground atoms false is a stable
model of the formula corresponding toΠ.

This theorem shows that the new definition of a stable
model, restricted to the “traditional” syntax, is a generaliza-
tion of the 1988 definition to non-Herbrand models. In Sec-
tion 3.1 we will see that our definition generalizes also the
definition proposed in[Ferraris, 2005] and used in[Ferraris
and Lifschitz, 2005a; Ferrariset al., 2006].

2.4 Further Examples
Proposition 2 below allows us to simplify the application of
the operator SM to formulas containing negation. In its state-
ment,p is the list of predicate constants occurring inF , andu
is a list of distinct predicate variables of the same length asp.

Proposition 2 If a formulaF begins with¬ then the formula

u ≤ p→ (F ∗(u)↔ F)

is logically valid.

Example 3 Let F be formula (7), corresponding to logic
program (1). Then SM[F] is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x))
∧¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)

∧∀x(((u(x) ∧ (¬q(x))∗)→ w(x))
∧((p(x) ∧ ¬q(x))→ r(x)))).

It is clear that the implication in the last line can be dropped.
Furthermore, since the subformula(u, v, w) < (p, q, r) con-
tains the conjunctive termv ≤ q, from Proposition 2 we can
conclude that(¬q(x))∗ can be equivalently replaced here by
¬q(x). Consequently, SM[F] can be rewritten as

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x))
∧¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)
∧∀x((u(x) ∧ ¬q(x))→ w(x))).

Using the methods for eliminating second-order quantifiers
described at the end of[Lifschitz, 1994, Section 3.3], we can

5This assertion remains true if we allow the heads of rules to be
disjunctions of atomic formulas.

convert this formula into the completion (2) of program (1).
We conclude that in this case the stable models of the program
are identical to the models of its completion.

We can further conclude that there is a unique Herbrand
stable model in this case, and that it corresponds to the set (4)
of ground atoms. This fact follows also from Proposition 1.

Example 4 If F is formula (8), corresponding to logic pro-
gram (5), then a similar calculation converts SM[F] into

p(a) ∧ p(b) ∧ ∀x(p(x)→ (q(x) ∨ ¬q(x)))
∧¬∃uv(((u, v) < (p, q)) ∧ u(a) ∧ u(b)

∧∀x(u(x)→ (v(x) ∨ ¬q(x)))).

After the elimination of second-order quantifiers, this formula
becomes

∀x(p(x)↔ (x = a ∨ x = b))
∧∀x(q(x) → (x = a ∨ x = b)).

The stable models of (5) can be characterized as the interpre-
tations that (i) representp by the set of values ofa andb, and
(ii) representq by a subset of that set. Consequently, (8) has 4
Herbrand stable models, and they correspond to sets (6).

We call a formulanegativeif every occurrence of every
predicate constant in this formula belongs to the antecedent
of an implication. Clearly any formula of the form¬F is
negative, because this expression is shorthand forF → ⊥
(Section 2.1). Proposition 2 can be generalized to arbitrary
negative formulas.

3 Relation to Earlier Work
3.1 Propositional Case
In the propositional case, the operator SM turns into the
encoding of formulas of equilibrium logic by quantified
Boolean formulas proposed in[Pearceet al., 2001] and re-
viewed in[Ferrariset al., 2006, Appendix B]. In view of the
Pearce-Tompits-Woltran theorem, as restated in that review, it
follows that in the propositional case our definition of a stable
model is equivalent to the definition of a stable model (answer
set) proposed in[Ferraris, 2005] and reviewed in[Ferrariset
al., 2006, Appendix A].

3.2 Lin’s Transformation
Theorem 5 from[Lin, 1991] relates stable models of “tradi-
tional programs” (as in Proposition 1 above) to circumscrip-
tion. It involves a syntactic transformation that can be de-
scribed as a sequence of three steps. First, each rule is turned
into a formula that may contain new predicate constants—
“doubles”p′ of the predicate constantsp occurring in the rule.
Second, the new predicate constants are circumscribed in par-
allel. Third, the result is conjoined with the equivalences
p′ = p. We will show that this idea is applicable to arbitrary
first-order sentences, and that the result of this transformation
is closely related to the operator SM.

To do this, we need parallel circumscription of a slightly
more general kind than defined in Section 2.2. In the defi-
nition of circumscription, there is no need to assume thatp
stands for the list ofall predicate constants occurring inF ;
p may include only some of these constants. The result of

circumscribing the predicate constantsp in a first-order sen-
tenceF will be denoted by CIRC[F ;p]. For instance, ifF
is (10) then CIRC[F ; q] is

p(a) ∧ ∀x(p(x)→ q(x))
∧¬∃v((v < q) ∧ p(a) ∧ ∀x(p(x)→ v(x))),

which is equivalent to

p(a) ∧ ∀x(p(x)↔ q(x)).

Let F be a first-order sentence, and letp be the list of all
predicate constants occurring inF . Take a listp′ of distinct
predicate constants that do not occur inF , of the same length
asp. By L[F ;p′] we denote the formula

CIRC[F ∗(p′);p′] ∧ (p′ = p).

This formula turns out to be equivalent to SM[F] conjoined
with explicit definitions of the new predicate constantsp′:

Proposition 3 L[F ;p′] is equivalent toSM[F] ∧ (p′ = p).

This is immediate from the definitions of L and SM, using the
fact thatF ∗(p) is equivalent toF .

It follows that SM[F] is equivalent to L[F ;p′] with the
predicate constantsp′ replaced by existentially quantified
predicate variables:

Corollary 1 SM[F] is equivalent to∃u L[F ;u].

3.3 Equilibrium Logic
The definition of first-order equilibrium logic below is similar
to the one proposed in[Pearce and Valverde, 2005, Section 7],
except that ground terms are not identified here with their val-
ues; as a result, different ground terms are allowed to have the
same value. Our definition describes essentially Kripke mod-
els with two worlds (“here” and “there”) that have the same
universe, interpret all function constants in the same way,and
satisfy the minimality condition introduced in[Pearce, 1997].

If I is an interpretation of a signatureσ (in the sense of
classical logic) then byσI we denote the extension ofσ ob-
tained by adding pairwise distinct symbolsξ∗, callednames,
for all elementsξ of the universe ofI as object constants. We
will identify I with its extension toσI defined byI(ξ∗) = ξ.
The value thatI assigns to a ground termt of signatureσI

will be denoted bytI .
By σf we denote the part ofσ consisting of its function

constants (including object constants, which are viewed as
function constants of arity 0). We will represent an inter-
pretationI of σ as the pair〈I|σf , I ′〉, whereI ′ is the set of
all atomic formulas, formed using predicate constants fromσ
and namesξ∗, which are satisfied byI.

An HT-interpretationof σ is a triple〈If , Ih, It〉, where

• If is an interpretation ofσf , and

• Ih, It are sets of atomic formulas formed using predi-
cate constants fromσ and object constantsξ∗ for arbi-
trary elementsξ of the universe ofIf , such thatIh ⊆ It.

The satisfaction relation between an HT-interpretation
I = 〈If , Ih, It〉 and a sentenceF of the signatureσ〈If ,Ih〉

is defined recursively:

• I |= p(t1, . . . , tn) if p((tI
f

1)∗, . . . , (tI
f

n)∗) ∈ Ih;

• I |= t1 = t2 if tI
f

1 = tI
f

2 ;

• I 6|= ⊥;

• I |= F ∧G if I |= F andI |= G; similarly for∨;

• I |= F → G if

(i) I 6|= F or I |= G, and
(ii) 〈I, It〉 |= F → G;

• I |= ∀xF (x) if, for each ξ from the universe ofIf ,
I |= F (ξ∗); similarly for ∃.

(In (ii) we understand satisfaction as in classical logic.)
An HT-interpretation of the form〈I, J, J〉 is anequilibrium

modelof F if

• 〈I, J, J〉 |= F , and

• for any proper subsetJ ′ of J , 〈I, J ′, J〉 6|= F .

This definition provides a precise model-theoretic counter-
part of the operator SM:

Proposition 4 An interpretation〈I, J〉 is a stable model of a
sentenceF iff 〈I, J, J〉 is an equilibrium model ofF .

4 Strong Equivalence
To turn the definition of a stable model proposed in this pa-
per into a tool that can help us in the design of provably
correct ASP programs, we need to find appropriate counter-
parts of the theorems that are used in correctness proofs to-
day.6 The “traditional” theorems about stable models will
roughly correspond to the special cases of these new theo-
rems in which the formulas involved are propositional combi-
nations of ground atoms, perhaps of a special syntactic form,
and our attention is restricted to Herbrand models.

To give an example illustrating this general point, we state
here a counterpart of the characterization of strong equiva-
lence[Lifschitz et al., 2001] due to Fangzhen Lin [2002].

About first-order sentencesF and G we say thatF is
strongly equivalentto G if, for every sentenceH (possibly
of a larger signature),F ∧ H has the same stable models
asG∧H (or, to put it differently, if, for everyH , SM[F ∧H]
is equivalent to SM[G ∧ H]). In the following theorem,p
is the list of predicate constants occurring in at least one of
the sentencesF , G, andp′ is a list of new, distinct predicate
constants of the same length asp.

Proposition 5 F is strongly equivalent toG iff the formula

p′ ≤ p→ (F ∗(p′)↔ G∗(p′))

is logically valid.

Using this theorem we can show, for instance, that
¬∀xF (x) is strongly equivalent to∃x¬F (x). (This is a pred-
icate logic counterpart of the fact that¬(F ∧ G) is strongly
equivalent to¬F ∨¬G.) Indeed, in view of Proposition 2, the
implications

p′ ≤ p→ ((¬∀xF (x))∗ ↔ ¬∀xF (x)),
p′ ≤ p→ ((∃x¬F (x))∗ ↔ ∃x¬F (x));

6See, for instance,[Ferraris and Lifschitz, 2005a, Sections 2.1–
2.4, 2.6–3.1].

are logically valid; the right-hand sides of the two equiva-
lences are classically equivalent to each other.

For our proof of the “only if” part of Proposition 5 it is not
essential that the definition of strong equivalence allows the
signature ofH to be larger than the signature ofF andG. It
follows thatF is strongly equivalent toG wheneverF ∧ H
has the same stable models asG ∧H for all sentencesH of
the same signature asF andG.

Relations between logic programs with variables, some-
what similar to strong equivalence as defined above but more
limited in scope, are discussed in[Pearce and Valverde, 2005,
Section 7] and[Eiteret al., 2006].

5 A New Perspective on Program Completion
5.1 Pointwise Stable Models
As observed in[Lee and Lin, 2006], program comple-
tion is similar in some ways to the concept of pointwise
circumscription—the modification of McCarthy’s original
definition that was proposed in[Lifschitz, 1987]. Accord-
ing to either definition, circumscribing a predicate constant p
makes the extent ofp “minimal,” but minimality is under-
stood in different versions differently. According to the origi-
nal definition of circumscription, to make the extent of a pred-
icate smaller means to replace it by a proper subset. In the
pointwise version, to make the extent of a predicate smaller
means to decrement it by a single point. The pointwise min-
imality condition is, generally, weaker than minimality ac-
cording to McCarthy; similarly, program completion is gen-
erally weaker than the stability condition.

In this section, we define a weakened, “pointwise” version
of the operator SM that can be viewed as a generalization of
program completion to arbitrary first-order formulas.

If p andq are predicate constants of the same arityk then

p
1

< q stands for the formula

∃x(q(x) ∧ ∀y(p(y)↔ (q(y) ∧ x 6= y))),

where x, y are disjoint tuples of distinct object variables
x1, . . . , xk, y1, . . . , yk, andx 6= y is shorthand for

¬(x1 = y1 ∧ · · · ∧ xk = yk).

This formula expresses that the extent ofp can be obtained
from the extent ofq by removing one element. Ifp andq are
tuplesp1, . . . , pn andq1, . . . , qn of predicate constants then

p
1

< q stands for the disjunction

∨

1≤i≤n

(pi

1

< qi) ∧
∧

1≤j≤n, j 6=i

(pj = qj)

 ,

and similarly for tuples of predicate variables.
Given a first-order sentenceF , by PSM[F] we denote the

second-order sentence

F ∧ ¬∃u((u
1

< p) ∧ F ∗(u)),

wherep, u andF ∗(u) are as in the definition of SM (Sec-
tion 2.3). A model ofF is pointwise stableif it satisfies
PSM[F]. Clearly, every stable model is pointwise stable.

Unlike SM[F], the weaker formula PSM[F] can be always
rewritten without second-order quantifiers:

Proposition 6 FormulaPSM[F] is equivalent to

F ∧
∧

1≤i≤n

¬∃xi(pi(x
i) ∧Gi(x

i)),

whereGi(x
i) stands for

F ∗(p1, . . . , pi−1, λyi(pi(y
i) ∧ yi 6= xi), pi+1, . . . , pn)

andxi, yi are disjoint tuples of distinct variables.7

For instance, ifF is p(a)∧ p(b) thenF ∗(u) is u(a)∧u(b),
so thatF ∗(λy(p(y) ∧ y 6= x)) is

p(a) ∧ a 6= x ∧ p(b) ∧ b 6= x,

and PSM[F] is

p(a) ∧ p(b) ∧ ¬∃x(p(x) ∧ p(a) ∧ a 6= x ∧ p(b) ∧ b 6= x).

This formula can be simplified:

p(a) ∧ p(b) ∧ ¬∃x(p(x) ∧ a 6= x ∧ b 6= x).

In this example, PSM[F] is obviously equivalent to the
completion ofF :

∀x(p(x)↔ (x = a ∨ x = b)).

This fact is an instance of the general theorem stated below.

5.2 Relation to Program Completion
Lloyd and Topor [1984] noted that the process of completing
a program can be extended in an obvious way to rules of a
more general form than allowed in[Clark, 1978]. It is essen-
tial that the head of a rule be an atom, but the body can be an
arbitrary first-order formula.

Proposition 7 below refers to completion in this more gen-
eral sense, but it does introduce a restriction on the syntactic
form of the bodies of rules. The rules we consider in this
section have the form

p0(t
0)← p1(t

1) ∧ · · · ∧ pm(tm) ∧N, (16)

whereti are tuples of terms andN is a negative formula (see
Section 2.4). For instance, every rule of form (15) has also
form (16): takeN to be¬Am+1 ∧ · · · ∧ ¬An.

A rule of form (16) isacyclicif for eachi = 1, . . . , m such
thatpi is p0, the formula

N → t
0 6= t

i

is logically valid. For instance, each of the rules (1) is obvi-
ously acyclic—its body doesn’t contain the predicate constant
occurring in the head. Any rule of form (16) can be made
acyclic by a strongly equivalent transformation: conjoin the
body with the formulast0 6= ti for all i = 1, . . . , m such that
pi is p0. For instance, the second rule of (14) can be rewritten
as the acyclic rule

p(f(x))← p(x), f(x) 6= x.

For this reason, the requirement in the statement of the the-
orem below that each of the given rules be acyclic is not an
essential limitation.
Proposition 7 For any finite setF of acyclic rules, the com-
pletion ofF is equivalent toPSM[F].

In view of this fact, PSM[F] can be viewed as an extension
of the concept of program completion to arbitrary first-order
formulas.

7On the use ofλ-notation in first-order logic, see[Lifschitz,
1994, Section 3.1].

5.3 Tight Formulas
François Fages [1991] showed that if a logic program satisfies
a certain syntactic condition, which is now called “tightness,”
then its stable models can be characterized as the models of
its completion. This theorem and its generalizations (see[Er-
dem and Lifschitz, 2003]) play an important role in answer
set programming.

Consider, for instance, logic programs consisting of rules
of form (16). According to the definition of a tight program,
to decide whether such a program is tight we should look at
its “predicate dependency graph.” The vertices of this graph
are the predicate constants occurring in the program, and its
edges lead fromp0 to p1, . . . , pm for the rules (16) that the
program consists of. The program is called tight if its predi-
cate dependency graph is acyclic.

Proposition 8 below extends Fages’s theorem to the general
framework introduced in this note. To define the predicate de-
pendency graph for an arbitrary first-order sentence, we need
a few auxiliary definitions.

Recall that an occurrence of a subformula or a predicate
constant in a formulaF is positive if the number of impli-
cations inF containing that occurrence in the antecedent is
even; it isstrictly positiveif that number is0.8 In (7), for in-
stance, both occurrences ofq are positive, but only the first is
strictly positive. The key idea of our definition of the predi-
cate dependency graph for an arbitrary formulaF is to con-
centrate on the implicationsG→ H that have strictly positive
occurrences inF ; such implications generalize the concept of
a rule in traditional logic programs.

We say that a predicate constantp dependson a predicate
constantq in an implicationG→ H if

• p has a strictly positive occurrence inH , and

• q has a positive occurrence inG that does not belong to
any occurrence of a negative formula inG.

The predicate dependency graphof a formulaF is the di-
rected graph such that

• its vertices are the predicate constants occurring inF ,
and

• it has an edge from a vertexp to a vertexq if p depends
on q in an implication that has a strictly positive occur-
rence inF .

For instance, the predicate dependency graph of formula (7)
has three verticesp, q, r and one edge, fromr to q. This is
the same graph as the one given by the more special definition
reviewed above applied to the “logic programming represen-
tation” (1) of formula (7).

Just as in the special case above, we say that a formulaF
is tight if its predicate dependency graph is acyclic. For in-
stance, formulas (7)–(10) are tight; formula (13) is not tight,
because its predicate dependency graph is a self-loop.

Proposition 8 For any tight sentenceF , PSM[F] is equiva-
lent toSM[F].

8Note that we apply the term “negative” to formulas, and the
terms “positive” and “strictly positive” to occurrences ofsubformu-
las and predicate constants in a formula.

6 Conclusion
The definition of a stable model proposed in this paper is ap-
plicable both to rules covered by the original 1988 definition
and to rules of several more general kinds used in answer set
programming. Instead of grounding and fixpoints, it refers to
a translation into classical logic, and is in this sense close to
the definitions of program completion and circumscription.

The relationship between the original definition of a stable
model and the definition proposed here can be compared with
the relationship between two definitions of a causal theory—
the original definition introduced in[McCain and Turner,
1997] and its generalization proposed in[Lifschitz, 1997].
The original definition uses a fixpoint construction; the gen-
eralization is based on a translation into classical logic.

Another definition of a stable model for first-order order
sentences is given independently by Lin and Zhou [2007]. It
refers to grounding, but in other ways it is similar to ours.

Extending main results of the theory of stable models to the
general framework described above is a topic of future work.

Acknowledgements
We are grateful to Pedro Cabalar, Martin Gebser and Hudson
Turner for useful comments on this paper.

References
[Clark, 1978] Keith Clark. Negation as failure. In Herve

Gallaire and Jack Minker, editors,Logic and Data Bases,
pages 293–322. Plenum Press, New York, 1978.

[Dohertyet al., 1997] Patrick Doherty, Witold Łukaszewicz,
and Andrzey Szałas. Computing circumscription revisited:
A reduction algorithm.Journal of Automated Reasoning,
18(3):297–336, 1997.

[Eiteret al., 2006] Thomas Eiter, Michael Fink, Hans Tom-
pits, Patrick Traxler, and Stefan Woltran. Replacements
in non-ground answer-set programming. InProceedings
of International Conference on Principles of Knowledge
Representation and Reasoning (KR), 2006.

[Erdem and Lifschitz, 2003] Esra Erdem and Vladimir Lif-
schitz. Tight logic programs.Theory and Practice of Logic
Programming, 3:499–518, 2003.

[Faberet al., 2004] Wolfgang Faber, Nicola Leone, and
Gerard Pfeifer. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. InPro-
ceedings of European Conference on Logics in Arti-
ficial Intelligence (JELIA), 2004. Revised version:
http://www.wfaber.com/research/papers/
jelia2004.pdf.

[Fages, 1991] François Fages. A fixpoint semantics for gen-
eral logic programs compared with the well–supported
and stable model semantics.New Generation Computing,
9:425–443, 1991.

[Ferraris and Lifschitz, 2005a] Paolo Ferraris and Vladimir
Lifschitz. Mathematical foundations of answer set pro-
gramming. InWe Will Show Them! Essays in Honour of
Dov Gabbay, pages 615–664. King’s College Publications,
2005.

[Ferraris and Lifschitz, 2005b] Paolo Ferraris and Vladimir
Lifschitz. Weight constraints as nested expressions.The-
ory and Practice of Logic Programming, 5:45–74, 2005.

[Ferrariset al., 2006] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. A generalization of the Lin-Zhao the-
orem. Annals of Mathematics and Artificial Intelligence,
2006. To appear.

[Ferraris, 2005] Paolo Ferraris. Answer sets for proposi-
tional theories. InProceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing (LPNMR), pages 119–131, 2005.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth
Bowen, editors,Proceedings of International Logic Pro-
gramming Conference and Symposium, pages 1070–1080,
1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9:365–385, 1991.

[Gelfond, 1987] Michael Gelfond. On stratified autoepis-
temic theories. InProceedings of National Conference on
Artificial Intelligence (AAAI), pages 207–211, 1987.

[Gelfond, 2002] Michael Gelfond. Representing knowl-
edge in A-Prolog. Lecture Notes in Computer Science,
2408:413–451, 2002.

[Lee and Lin, 2006] Joohyung Lee and Fangzhen Lin. Loop
formulas for circumscription. Artificial Intelligence,
170(2):160–185, 2006.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustin Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2:526–541,
2001.

[Lifschitz, 1985] Vladimir Lifschitz. Computing circum-
scription. InProceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 121–127,
1985.

[Lifschitz, 1987] Vladimir Lifschitz. Pointwise circumscrip-
tion. In Matthew Ginsberg, editor,Readings in nonmono-
tonic reasoning, pages 179–193. Morgan Kaufmann, San
Mateo, CA, 1987.

[Lifschitz, 1990] Vladimir Lifschitz. On open defaults. In
John Lloyd, editor,Computational Logic: Symposium
Proceedings, pages 80–95. Springer, 1990.

[Lifschitz, 1994] Vladimir Lifschitz. Circumscription. In
D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors,
The Handbook of Logic in AI and Logic Programming,
volume 3, pages 298–352. Oxford University Press, 1994.

[Lifschitz, 1997] Vladimir Lifschitz. On the logic of causal
explanation.Artificial Intelligence, 96:451–465, 1997.

[Lin and Zhou, 2007] Fangzhen Lin and Yi Zhou. From an-
swer set logic programming to circumscription via logic of
GK. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 2007. This volume.

[Lin, 1991] Fangzhen Lin. A Study of Nonmonotonic Rea-
soning. PhD thesis, Stanford University, 1991.

[Lin, 2002] Fangzhen Lin. Reducing strong equivalence of
logic programs to entailment in classical propositional
logic. InProceedings of International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
pages 170–176, 2002.

[Lloyd, 1984] John Lloyd. Foundations of Logic Program-
ming. Springer-Verlag, 1984.

[McCain and Turner, 1997] Norman McCain and Hudson
Turner. Causal theories of action and change. InPro-
ceedings of National Conference on Artificial Intelligence
(AAAI), pages 460–465, 1997.

[McCarthy, 1980] John McCarthy. Circumscription—a form
of non-monotonic reasoning. Artificial Intelligence,
13:27–39,171–172, 1980.

[McCarthy, 1986] John McCarthy. Applications of circum-
scription to formalizing common sense knowledge.Artifi-
cial Intelligence, 26(3):89–116, 1986.

[Moore, 1985] Robert Moore. Semantical considerations on
nonmonotonic logic.Artificial Intelligence, 25(1):75–94,
1985.

[Pearce and Valverde, 2004] David Pearce and Agustin
Valverde. Towards a first order equilibrium logic for
nonmonotonic reasoning. InProceedings of European
Conference on Logics in Artificial Intelligence (JELIA),
pages 147–160, 2004.

[Pearce and Valverde, 2005] David Pearce and Agustin
Valverde. A first order nonmonotonic extension of
constructive logic.Studia Logica, 80:323–348, 2005.

[Pearceet al., 2001] David Pearce, Hans Tompits, and Ste-
fan Woltran. Encodings for equilibrium logic and logic
programs with nested expressions. InProceedings of
Portuguese Conference on Artificial Intelligence (EPIA),
pages 306–320, 2001.

[Pearce, 1997] David Pearce. A new logical characteri-
zation of stable models and answer sets. In Jürgen
Dix, Luis Pereira, and Teodor Przymusinski, editors,
Non-Monotonic Extensions of Logic Programming (Lec-
ture Notes in Artificial Intelligence 1216), pages 57–70.
Springer-Verlag, 1997.

[Reiter, 1980] Raymond Reiter. A logic for default reason-
ing. Artificial Intelligence, 13:81–132, 1980.

[Reiter, 1982] Raymond Reiter. Circumscription implies
predicate completion (sometimes). InProceedings of
International Joint Conference on Artificial Intelligence
(IJCAI), pages 418–420, 1982.

[Simonset al., 2002] Patrik Simons, Ilkka Niemelä, and
Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138:181–234,
2002.

