Logic Programming with Function Symbols: Checking Termination of Bottom-up Evaluation Through Program Adornments

Sergio Greco, Cristian Molinaro, Irina Trubitsyna

DIMES, Università della Calabria, Italy
Logic Programs with Function Symbols

• Function symbols overcome some modeling limitations of traditional ASP systems:
 – Make modeling easier and the resulting encodings more readable and concise.
 – Increase the expressive power (Turing complete).
 – Allow us to overcome the inability of handling infinite domains.

• **Problem**: Common inference tasks become undecidable.

• **Solution**: Restrict the use of function symbols while guaranteeing decidability of common inference tasks.
Finitely-ground programs

• Finitely-ground programs [Calimeri et al. ICLP’08]
 – A finitely-ground program has a finite set of stable models, each of finite size.
 – Stable models of such programs can be computed and thus common inference tasks become decidable.
 – But deciding whether a program is finitely-ground is semi-decidable.
Finitely-ground programs

- Decidable criteria providing sufficient conditions for a program to be finitely-ground:
 - ω-restricted programs [Syrjänen LPNMR’01]
 - λ-restricted programs [Gesber et al. LPNMR’07]
 - Finite domain programs [Calimeri et al. ICLP’08]
 - Argument-restricted programs [Lierler and Lifschitz ICLP’09]
 - Safe and Γ-acyclic programs [Greco et al. ICLP’12]
 - Bounded programs [Greco et al. IJCAI’13]
Contribution

• We propose a new technique that, used in conjunction with current criteria, allows us to detect more programs as finitely-ground.
• The technique transforms a program P into an (adorned) “equivalent” program P'.
• The aim is to apply current criteria to the adorned program P' rather than the original program P.
Program Adornment

• Suppose we want to check if a program P is finitely-ground by applying a criterion C.
• We first transform P into an adorned program P'.
• Then, we apply criterion C to P' (rather than the original program P).
• (Soundness) If P' satisfies criterion C then the original program P is finitely-ground.
• This approach strictly enlarges the class of programs recognized as finitely-ground by criterion C.
Example

Original program

\[
p(X, X) \leftarrow base(X) \\
q(X, Y) \leftarrow p(X, Y) \\
p(f(X), g(X)) \leftarrow q(X, X)
\]

• The bottom-up evaluation of the program terminates whatever finite set of facts for *base* is added to the program.

• However, none of the current criteria is able to detect termination.
Example (Argument-restricted criterion)

Original program

\[p(X, X) \leftarrow base(X) \]

\[q(X, Y) \leftarrow p(X, Y) \]

Argument-restricted criterion

\[p(f(X), g(X)) \leftarrow q(X, X) \]
Example (Argument-restricted criterion)

<table>
<thead>
<tr>
<th>Original program</th>
<th>Argument-restricted criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(X, X) \leftarrow \text{base}(X)$</td>
<td>Find a function φ that assigns a natural number to each of $p[1], p[2], q[1], q[2]$ so that the following four conditions are all satisfied:</td>
</tr>
<tr>
<td>$q(X, Y) \leftarrow p(X, Y)$</td>
<td></td>
</tr>
<tr>
<td>$p(f(X), g(X)) \leftarrow q(X, X)$</td>
<td></td>
</tr>
</tbody>
</table>
Example (Argument-restricted criterion)

Original program

\[p(X,X) \leftarrow base(X) \]

\[q(X,Y) \leftarrow p(X,Y) \]

\[p(f(X),g(X)) \leftarrow q(X,X) \]

Argument-restricted criterion

Find a function \(\varphi \) that assigns a natural number to each of \(p[1], p[2], q[1], q[2] \) so that the following four conditions are all satisfied:

- \(\varphi(q[1]) \geq \varphi(p[1]) \),
Example (Argument-restricted criterion)

Original program

\[p(X, X) \leftarrow \text{base}(X) \]

\[q(X, Y) \leftarrow p(X, Y) \]

\[p(f(X), g(X)) \leftarrow q(X, X) \]

Argument-restricted criterion

Find a function \(\varphi \) that assigns a natural number to each of \(p[1], p[2], q[1], q[2] \) so that the following four conditions are all satisfied:

- \(\varphi(q[1]) \geq \varphi(p[1]) \),
- \(\varphi(q[2]) \geq \varphi(p[2]) \),
Example (Argument-restricted criterion)

Original program

\[p(X, X) \leftarrow \text{base}(X) \]

\[q(X, Y) \leftarrow p(X, Y) \]

\[p(f(X), g(X)) \leftarrow q(X, X) \]

Argument-restricted criterion

Find a function \(\varphi \) that assigns a natural number to each of \(p[1], p[2], q[1], q[2] \) so that the following four conditions are all satisfied:

- \(\varphi(q[1]) \geq \varphi(p[1]) \),
- \(\varphi(q[2]) \geq \varphi(p[2]) \),
- \(\varphi(p[1]) > \varphi(q[1]) \) or \(\varphi(p[1]) > \varphi(q[2]) \),
Example (Argument-restricted criterion)

Original program

\[p(X, X) \leftarrow \text{base}(X) \]

\[q(X, Y) \leftarrow p(X, Y) \]

\[p(f(X), g(X)) \leftarrow q(X, X) \]

Argument-restricted criterion

Find a function \(\varphi \) that assigns a natural number to each of \(p[1], p[2], q[1], q[2] \) so that the following four conditions are all satisfied:

- \(\varphi(q[1]) \geq \varphi(p[1]) \),
- \(\varphi(q[2]) \geq \varphi(p[2]) \),
- \(\varphi(p[1]) > \varphi(q[1]) \) or \(\varphi(p[1]) > \varphi(q[2]) \),
- \(\varphi(p[2]) > \varphi(q[1]) \) or \(\varphi(p[2]) > \varphi(q[2]) \).
Example (Argument-restricted criterion)

Original program

\[p(X, X) \leftarrow \text{base}(X) \]

\[q(X, Y) \leftarrow p(X, Y) \]

\[p(f(X), g(X)) \leftarrow q(X, X) \]

Argument-restricted criterion

Find a function \(\phi \) that assigns a natural number to each of \(p[1], p[2], q[1], q[2] \) so that the following four conditions are all satisfied:

- \(\phi(q[1]) \geq \phi(p[1]) \),
- \(\phi(q[2]) \geq \phi(p[2]) \),
- \(\phi(p[1]) > \phi(q[1]) \) or \(\phi(p[1]) > \phi(q[2]) \),
- \(\phi(p[2]) > \phi(q[1]) \) or \(\phi(p[2]) > \phi(q[2]) \).

As the conditions above are unsatisfiable, the program is not argument-restricted.
Example (Γ-acyclicity criterion)

Original program

\[p(X, X) \leftarrow base(X) \]
\[q(X, Y) \leftarrow p(X, Y) \]

\[p(f(X), g(X)) \leftarrow q(X, X) \]

Γ-acyclicity criterion
Example (Γ-acyclicity criterion)

Original program

\[p(X, X) \leftarrow \text{base}(X) \]
\[q(X, Y) \leftarrow p(X, Y) \]
\[p(f(X), g(X)) \leftarrow q(X, X) \]

Γ-acyclicity criterion

\[
\begin{align*}
p[1] & \quad \epsilon \\
q[1] & \quad \epsilon
\end{align*}
\]
Example (Γ-acyclicity criterion)

Original program

\[
p(X, X) \leftarrow \text{base}(X)
\]

\[
q(X, Y) \leftarrow p(X, Y)
\]

\[
p(f(X), g(X)) \leftarrow q(X, X)
\]

Γ-acyclicity criterion

\[
\begin{array}{c}
p[1] \\
\downarrow \text{f} \\
q[1] \\
\downarrow \varepsilon \\
p[1]
\end{array}
\]
Example (Γ-acyclicity criterion)

Original program

\[p(X, X) \leftarrow base(X) \]
\[q(X, Y) \leftarrow p(X, Y) \]
\[p(f(X), g(X)) \leftarrow q(X, X) \]

Γ-acyclicity criterion

The program is not Γ-acyclic
Example

Original program

\[p(X, X) \leftarrow base(X) \]
\[q(X, Y) \leftarrow p(X, Y) \]
\[p(f(X), g(X)) \leftarrow q(X, X) \]
Example

Original program

\[p(X, X) \leftarrow base(X) \]

\[q(X, Y) \leftarrow p(X, Y) \]

\[p(f(X), g(X)) \leftarrow q(X, X) \]

Adorned program

\[p^{\varepsilon\varepsilon}(X, X) \leftarrow base^\varepsilon(X) \]
Example

Original program

\[
p(X,X) \leftarrow \text{base}(X)
\]

\[
q(X,Y) \leftarrow p(X,Y)
\]

\[
p(f(X),g(X)) \leftarrow q(X,X)
\]

Adorned program

\[
p^{ee}(X,X) \leftarrow \text{base}^{e}(X)
\]

\[
q^{ee}(X,Y) \leftarrow p^{ee}(X,Y)
\]
Example

Original program

\[p(X, X) \leftarrow \text{base}(X) \]
\[q(X, Y) \leftarrow p(X, Y) \]
\[p(f(X), g(X)) \leftarrow q(X, X) \]

Adorned program

\[p^{\varepsilon \varepsilon}(X, X) \leftarrow \text{base}^{\varepsilon}(X) \]
\[q^{\varepsilon \varepsilon}(X, Y) \leftarrow p^{\varepsilon \varepsilon}(X, Y) \]
\[p^{f_{i1}}(f(X), g(X)) \leftarrow q^{\varepsilon \varepsilon}(X, X) \]
Example

Original program

\[
\begin{align*}
p(X, X) & \leftarrow \text{base}(X) \\
q(X, Y) & \leftarrow p(X, Y) \\
p(f(X), g(X)) & \leftarrow q(X, X)
\end{align*}
\]

Adorned program

\[
\begin{align*}
p^{\varepsilon\varepsilon}(X, X) & \leftarrow \text{base}^\varepsilon(X) \\
q^{\varepsilon\varepsilon}(X, Y) & \leftarrow p^{\varepsilon\varepsilon}(X, Y) \\
p^{f_1g_1}(f(X), g(X)) & \leftarrow q^{\varepsilon\varepsilon}(X, X) \\
q^{f_1g_1}(X, Y) & \leftarrow p^{f_1g_1}(X, Y)
\end{align*}
\]
Example

Original program

\[
p(X, X) \leftarrow base(X)
q(X, Y) \leftarrow p(X, Y)
p(f(X), g(X)) \leftarrow q(X, X)
\]

Adorned program

\[
p^{\varepsilon \varepsilon}(X, X) \leftarrow base^{\varepsilon}(X)
q^{\varepsilon \varepsilon}(X, Y) \leftarrow p^{\varepsilon \varepsilon}(X, Y)
p^{f_{1g_1}}(f(X), g(X)) \leftarrow q^{\varepsilon \varepsilon}(X, X)
q^{f_{1g_1}}(X, Y) \leftarrow p^{f_{1g_1}}(X, Y)
p^{??}(f(X), g(X)) \leftarrow q^{f_{1g_1}}(X, X)
\]
Example

Original program
\[
\begin{align*}
 & p(X, X) \leftarrow \text{base}(X) \\
 & q(X, Y) \leftarrow p(X, Y) \\
 & p(f(X), g(X)) \leftarrow q(X, X)
\end{align*}
\]

Adorned program
\[
\begin{align*}
 & p^{\varepsilon \varepsilon}(X, X) \leftarrow \text{base}^{\varepsilon}(X) \\
 & q^{\varepsilon \varepsilon}(X, Y) \leftarrow p^{\varepsilon \varepsilon}(X, Y) \\
 & p^{f_{g_1}}(f(X), g(X)) \leftarrow q^{\varepsilon \varepsilon}(X, X) \\
 & q^{f_{g_1}}(X, Y) \leftarrow p^{f_{g_1}}(X, Y)
\end{align*}
\]
Each adorned rule is obtained from a rule in the original program by adding adornments which keep track of the structure of the terms that can be propagated during the bottom-up evaluation.
Example

Original program

\[
\begin{align*}
p(X,X) & \leftarrow \text{base}(X) \\
qu(X,Y) & \leftarrow p(X,Y) \\
p(f(X),g(X)) & \leftarrow q(X,X)
\end{align*}
\]

Adorned program

\[
\begin{align*}
p^{\varepsilon\varepsilon}(X,X) & \leftarrow \text{base}^{\varepsilon}(X) \\
q^{\varepsilon\varepsilon}(X,Y) & \leftarrow p^{\varepsilon\varepsilon}(X,Y) \\
p^{f_1g_1}(f(X),g(X)) & \leftarrow q^{\varepsilon\varepsilon}(X,X) \\
q^{f_1g_1}(X,Y) & \leftarrow p^{f_1g_1}(X,Y)
\end{align*}
\]

The adorned program is “equivalent” to the original one in the following sense: the minimal model of the original program can be obtained from the minimal model of the adorned program by dropping adornments.
Example

Original program

\[
\begin{align*}
 p(X, X) &\leftarrow \text{base}(X) \\
 q(X, Y) &\leftarrow p(X, Y) \\
 p(f(X), g(X)) &\leftarrow q(X, X)
\end{align*}
\]

Adorned program

\[
\begin{align*}
 p^{\varepsilon}(X, X) &\leftarrow \text{base}^{\varepsilon}(X) \\
 q^{\varepsilon}(X, Y) &\leftarrow p^{\varepsilon}(X, Y) \\
 p^{f_{1g_1}}(f(X), g(X)) &\leftarrow q^{\varepsilon}(X, X) \\
 q^{f_{1g_1}}(X, Y) &\leftarrow p^{f_{1g_1}}(X, Y)
\end{align*}
\]

- The bottom-up evaluation of the original program always ends.
- None of the current criteria is able to realize it (when applied to the original program).
- But all current criteria realize that the bottom-up evaluation of the **adorned program** ends.
- This allows us to conclude that the bottom-up evaluation of the original program always ends (by the soundness of the proposed adornment technique).
Some terminology

- The set of **adornment symbols** is:
 \[\{ f_i \mid f \text{ is a function symbol and } i \text{ is a natural number} \} \cup \{ \varepsilon \} \]

- \(\varepsilon \) means that the corresponding term can be a simple term (a variable or a constant).

- \(f_i \) means that the corresponding term can be a complex term of the form \(f(\ldots) \).
Some terminology

• An *adornment* for a predicate symbol p of arity n is a string of n adornment symbols.

• An *adornment definition* for an adornment symbol f_i is an expression of the form

$$f_i = f(\alpha_1, \ldots, \alpha_m)$$

where m is the arity of function symbol f and the α_j's are adornment symbols.
Some terminology

- **Adornments and adornment definitions** are used to keep track of the structure of the terms that can be propagated during the program evaluation.
Some terminology

- **Adornments and adornment definitions** are used to keep track of the structure of the terms that can be propagated during the program evaluation.

- As an example, the adorned predicate symbol $p_{f_1g_1}$
Some terminology

- Adornments and adornment definitions are used to keep track of the structure of the terms that can be propagated during the program evaluation.

- As an example, the adorned predicate symbol $p^{f_1g_1}$ with adornment definitions $f_1 = f(\varepsilon)$ and $g_1 = g(f_1)$
Some terminology

• Adornments and adornment definitions are used to keep track of the structure of the terms that can be propagated during the program evaluation.

• As an example, the adorned predicate symbol $p^{f_1g_1}$ with adornment definitions $f_1 = f(\varepsilon)$ and $g_1 = g(f_1)$ means that the evaluation of the considered program might yield atoms of the form $p(f(a),g(f(b)))$ with a and b being constants.
Some terminology

- **Adornments and adornment definitions** are used to keep track of the structure of the terms that can be propagated during the program evaluation.

- As an example, the adorned predicate symbol $p^{f_1g_1}$ with adornment definitions $f_1 = f(\varepsilon)$ and $g_1 = g(f_1)$ means that the evaluation of the considered program might yield atoms of the form $p(f(a),g(f(b)))$ with a and b being constants.

- **Database facts** are facts for base predicate symbols where function symbols do not appear.
Some terminology

• **Adornments and adornment definitions are used to keep track of the structure of the terms that can be propagated during the program evaluation.**

• As an example, the adorned predicate symbol $p^{f_1g_1}$ with adornment definitions $f_1 = f(\varepsilon)$ and $g_1 = g(f_1)$ means that the evaluation of the considered program might yield atoms of the form $p(f(a), g(f(b)))$ with a and b being constants.

• **Database facts** are facts for base predicate symbols where function symbols do not appear.

We initially focus on positive normal programs
Adornment Algorithm

• The adornment algorithm relies on two steps:
 1. Checking if an adorned body is *coherent*
 2. Propagating adornments from a coherently adorned body to the head
Adornment coherency

Checking if an adorned conjunction is *coherent*

1. For every adorned atom $p^{\alpha_1...\alpha_n}(t_1,...,t_n)$ in the *body* conjunction, check if every t_i complies with the term structure described by α_i
Adornment coherency

Checking if an adorned conjunction is coherent

1. For every adorned atom $p^{\alpha_1 \ldots \alpha_n}(t_1, \ldots, t_n)$ in the body conjunction, check if every t_i complies with the term structure described by α_i

 – Consider the adorned atom $p^{f_1}(g(X))$
Adornment coherency

Checking if an adorned conjunction is coherent

1. For every adorned atom $p^{\alpha_1\ldots\alpha_n}(t_1,\ldots,t_n)$ in the body conjunction, check if every t_i complies with the term structure described by α_i

 – Consider the adorned atom $p^{f_1(g(X))}$ with adornment definition $f_1 = f(\varepsilon)$.
Adornment coherency

Checking if an adorned conjunction is **coherent**

1. For every adorned atom $p^{\alpha_1\ldots\alpha_n}(t_1,\ldots,t_n)$ in the body conjunction, check if every t_i complies with the term structure described by α_i

 – Consider the adorned atom $p^{f_1}(g(X))$ with adornment definition $f_1 = f(\varepsilon)$.
 The adorned atom is **NOT coherently adorned** because $g(X)$ does not comply with the term structure $f(\varepsilon)$ corresponding to f_1.
Adornment coherency

Checking if an adorned conjunction is coherent

1. For every adorned atom $p^{\alpha_1...\alpha_n}(t_1,...,t_n)$ in the body conjunction, check if every t_i complies with the term structure described by α_i

 – Consider the adorned atom $p^{f_1}(g(X))$
 with adornment definition $f_1 = f(\epsilon)$.
 The adorned atom is NOT coherently adorned because $g(X)$ does not comply with the term structure $f(\epsilon)$ corresponding to f_1.
 The expected adornment should be of the form $p^{g_i}(g(X))$ with adornment definition $g_i = g(...)$.
Adornment coherency

Checking if an adorned conjunction is coherent

1. For every adorned atom $p^{\alpha_1...\alpha_n}(t_1,...,t_n)$ in the body conjunction, check if every t_i complies with the term structure described by α_i

 – Consider the adorned atom $p^{f_1}(g(X))$ with adornment definition $f_1 = f(\varepsilon)$. The adorned atom is NOT coherently adorned because $g(X)$ does not comply with the term structure $f(\varepsilon)$ corresponding to f_1. The expected adornment should be of the form $p^{g_i}(g(X))$ with adornment definition $g_i = g(...)$.

 – $p^{f_1}(f(X))$ and $p^{f_1}(X)$ are coherently adorned.
Adornment coherency

Checking if an adorned conjunction is coherent

1. For every adorned atom $p^{\alpha_1...\alpha_n}(t_1,...,t_n)$ in the body conjunction, check if every t_i complies with the term structure described by α_i

 – Consider the adorned atom $p^{f_1}(g(X))$ with adornment definition $f_1 = f(\varepsilon)$. The adorned atom is **NOT coherently adorned** because $g(X)$ does not comply with the term structure $f(\varepsilon)$ corresponding to f_1. The expected adornment should be of the form $p^{g_1}(g(X))$ with adornment definition $g_1 = g(...)$.

 – $p^{f_1}(f(X))$ and $p^{f_1}(X)$ are **coherently adorned**.

 – $p^{f_1}(f(f(X)))$ is **NOT coherently adorned**. The expected adornment should be of the form $p^{f_i}(f(f(X)))$ with $f_i = f(f_j)$ and $f_j = f(...)$.
Adornment coherency

Checking if an adorned conjunction is coherent

2. Check if every variable is associated with only one adornment symbol.
Adornment coherency

Checking if an adorned conjunction is **coherent**

2. Check if every variable is associated with only one adornment symbol.

 – The adorned atom $p^{f_1 g_1}(X, X)$ with adornment definitions $f_1 = f(\varepsilon)$ and $g_1 = g(\varepsilon)$ is **NOT coherently adorned** because variable X is associated with two different adornment symbols.
Adornment coherency

Checking if an adorned conjunction is *coherent*

2. Check if every variable is associated with only one adornment symbol.

 – The adorned atom $p^{f_1g_1}(X,X)$ with adornment definitions $f_1 = f(\varepsilon)$ and $g_1 = g(\varepsilon)$ is **NOT coherently adorned** because variable X is associated with two different adornment symbols.

 – $p^{f_1g_1}(f(X),g(X))$ is *coherently adorned*.

Adornment propagation

• Adornment propagation (from the body to the head): given a coherently adorned body, determine the adornment of the head.

• This is done on the basis of
 – the structure of the terms in the head, and
 – the adornments in the body.
Adornment propagation

Original rule

\[p(X, f(X, g(X))) \leftarrow b(X) \]
Adornment propagation

Original rule

\[p(X, f(X, g(X))) \leftarrow b(X) \]

Suppose we have derived the adorned predicate symbol \(b^\epsilon \).
This means that the program evaluation may yield atoms of the form \(b(c) \), where \(c \) is a constant.
Adornment propagation

Original rule

\[p(X, f(X, g(X))) \leftarrow b(X) \]

Adorned body

\[\leftarrow b^\varepsilon(X) \]

Suppose we have derived the adorned predicate symbol \(b^\varepsilon \). This means that the program evaluation may yield atoms of the form \(b(c) \), where \(c \) is a constant.
Adornment propagation

Original rule
\[p(X, f(X, g(X))) \leftarrow b(X) \]

Adorned body
\[\leftarrow b^\epsilon(X) \]

Thus, the original rule may yield atoms of the form \(p(c, f(c, g(c))) \).

Suppose we have derived the adorned predicate symbol \(b^\epsilon \). This means that the program evaluation may yield atoms of the form \(b(c) \), where \(c \) is a constant.
Adornment propagation

Original rule
\[p(X, f(X, g(X))) \leftarrow b(X) \]

Adorned rule
\[p^{\varepsilon f_1}(X, f(X, g(X))) \leftarrow b^\varepsilon(X) \]

Adornment definitions
\[f_1 = f(\varepsilon, g_1) \]
\[g_1 = g(\varepsilon) \]

Thus, the original rule may yield atoms of the form \(p(c, f(c, g(c))) \).

Suppose we have derived the adorned predicate symbol \(b^\varepsilon \). This means that the program evaluation may yield atoms of the form \(b(c) \), where \(c \) is a constant.

The rule head is adorned to keep track of this. We get an adorned rule and two adornment definitions.
Adornment Algorithm

• The adornment algorithm maintains
 – a set P' of adorned rules,
 – a set AP of adorned predicate symbols, and
 – a set AD of adornment definitions.
Adornment Algorithm

• The adornment algorithm maintains
 – a set P' of adorned rules,
 – a set AP of adorned predicate symbols, and
 – a set AD of adornment definitions.

• Given a positive normal program P
 1. Base predicate symbols are adorned with ε’s.
Adornment Algorithm

• The adornment algorithm maintains
 – a set P' of adorned rules,
 – a set AP of adorned predicate symbols, and
 – a set AD of adornment definitions.

• Given a positive normal program P
 1. Base predicate symbols are adorned with ε’s.
 2. If there is a rule r of P whose body can be coherently adorned using adorned predicate symbols in AP, then
 a. Adorn the head of r according to the chosen adorned body (this may yield new adorned predicate symbols and new adornment definitions that are added to AP and AD).
 b. Add the obtained adorned rule to P'.
Adornment Algorithm

Original program

\[
p(X, f(X)) \leftarrow \text{base}(X)
\]

\[
p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y)
\]

\[
p(X, Y) \leftarrow p(f(X), f(Y))
\]
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

Adorned predicate symbols

\[\text{base}^e \]

Adornment definitions
Adornment Algorithm

Original program

\[
p(X, f(X)) \leftarrow base(X)
\]
\[
p(X, f(X)) \leftarrow p(Y, X), base(Y)
\]
\[
p(X, Y) \leftarrow p(f(X), f(Y))
\]

Adorned program

Adorned predicate symbols

\[base^e \]

Adornment definitions
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[\leftarrow \text{base}^\varepsilon(X) \]
Adornment Algorithm

Original program

\[
p(X, f(X)) \leftarrow base(X)
\]

\[
p(X, f(X)) \leftarrow p(Y, X), base(Y)
\]

\[
p(X, Y) \leftarrow p(f(X), f(Y))
\]

Adorned program

Adorned predicate symbols

\[
p^{εf_1}(X, f(X)) \leftarrow base^{ε}(X)
\]

Adornment definitions

\[
base^ε
\]

\[
p^{εf_1}
\]

\[
f_1 = f(ε)
\]
Adornment Algorithm

Original program
\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program
\[p^{\varepsilon_{f_1}}(X, f(X)) \leftarrow \text{base}^\varepsilon(X) \]

Adorned predicate symbols
\[\text{base}^\varepsilon \]
\[p^{\varepsilon_{f_1}} \]
\[f_1 = f(\varepsilon) \]

Adornment definitions
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow base(X) \]

\[p(X, f(X)) \leftarrow p(Y, X), base(Y) \]

\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{\varepsilon f_1}(X, f(X)) \leftarrow base^\varepsilon(X) \]

Adorned predicate symbols

- \(base^\varepsilon \)
- \(p^{\varepsilon f_1} \)

Adornment definitions

\[f_1 = f(\varepsilon) \]
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow base(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), base(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{\varepsilon f_1}(X, f(X)) \leftarrow base^{\varepsilon}(X) \]
\[\leftarrow p^{\varepsilon f_1}(Y, X), base^{\varepsilon}(Y) \]

Adorned predicate symbols

- \(base^{\varepsilon} \)
- \(p^{\varepsilon f_1} \)

Adornment definitions

\(f_1 = f(\varepsilon) \)
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow base(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), base(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{e_{f_1}}(X, f(X)) \leftarrow base^{e}(X) \]
\[p^{e_{f_1}}(X, f(X)) \leftarrow p^{e_{f_1}}(Y, X), base^{e}(Y) \]

Adorned predicate symbols

\[base^e \]
\[p^{e_{f_1}} \]
\[p^{f_1 f_2} \]

Adornment definitions

\[f_1 = f(e) \]
\[f_2 = f(f_1) \]
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{\varepsilon f_1}(X, f(X)) \leftarrow \text{base}^\varepsilon(X) \]
\[p^{\varepsilon f_1}(X, f(X)) \leftarrow p^{\varepsilon f_1}(Y, X), \text{base}^\varepsilon(Y) \]

Adorned predicate symbols

\[\begin{align*}
 \text{base}^\varepsilon \\
 p^{\varepsilon f_1} \\
 p^{f_1 f_2}
\end{align*} \]

Adornment definitions

\[\begin{align*}
 f_1 &= f(\varepsilon) \\
 f_2 &= f(f_1)
\end{align*} \]
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

Adorned predicate symbols

- \(\text{base}^\varepsilon \)
- \(p^{\varepsilon f_1} \)
- \(p^{f_1 f_2} \)

Adornment definitions

\[f_1 = f(\varepsilon) \]
\[f_2 = f(f_1) \]
Adornment Algorithm

Original program

\[
\begin{align*}
p(X, f(X)) &\leftarrow \text{base}(X) \\
p(X, f(X)) &\leftarrow p(Y, X), \text{base}(Y) \\
p(X, Y) &\leftarrow p(f(X), f(Y))
\end{align*}
\]

Adorned program

\[
\begin{align*}
p^{\epsilon f_1}(X, f(X)) &\leftarrow \text{base}^\epsilon(X) \\
p^{f_1 f_2}(X, f(X)) &\leftarrow p^{\epsilon f_1}(Y, X), \text{base}^\epsilon(Y) \\
&\leftarrow p^{f_1 f_2}(f(X), f(Y))
\end{align*}
\]

Adorned predicate symbols

\[
\begin{align*}
\text{base}^\epsilon \\
p^{\epsilon f_1} \\
p^{f_1 f_2}
\end{align*}
\]

Adornment definitions

\[
\begin{align*}
f_1 = f(\epsilon) \\
f_2 = f(f_1)
\end{align*}
\]
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow base(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), base(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

Adorned predicate symbols

\[p^{\epsilon f_1}(X, f(X)) \leftarrow base^{\epsilon}(X) \]
\[p_{f_1f_2}(X, f(X)) \leftarrow p^{\epsilon f_1}(Y, X), base^{\epsilon}(Y) \]
\[p^{\epsilon f_1}(X, Y) \leftarrow p_{f_1f_2}(f(X), f(Y)) \]

Adorned definitions

\[base^{\epsilon} \]
\[p^{\epsilon f_1} \]
\[p_{f_1f_2} \]

\[f_1 = f(\epsilon) \]
\[f_2 = f(f_1) \]
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow base(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), base(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{ef_1}(X, f(X)) \leftarrow base^e(X) \]
\[p^{ef_1}(X, f(X)) \leftarrow p^{ef_1}(Y, X), base^e(Y) \]
\[p^{ef_1}(X, Y) \leftarrow p^{f_1 f_2}(f(X), f(Y)) \]

Adorned predicate symbols

- \(base^e \)
- \(p^{ef_1} \)
- \(p^{f_1 f_2} \)

Adornment definitions

- \(f_1 = f(\epsilon) \)
- \(f_2 = f(f_1) \)

The adornment algorithm terminates because no new coherently adorned body conjunction can be generated.
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{\varepsilon f_1}(X, f(X)) \leftarrow \text{base}^\varepsilon(X) \]
\[p^{f_1 f_2}(X, f(X)) \leftarrow p^{\varepsilon f_1}(Y, X), \text{base}^\varepsilon(Y) \]
\[p^{\varepsilon f_1}(X, Y) \leftarrow p^{f_1 f_2}(f(X), f(Y)) \]

Adorned predicate symbols

- \[\text{base}^\varepsilon \]
- \[p^{\varepsilon f_1} \]
- \[p^{f_1 f_2} \]

Adornment definitions

\[f_1 = f(\varepsilon) \]
\[f_2 = f(f_1) \]

\[p^{f_1 f_2}(Y, X), \text{base}^\varepsilon(Y) \] is not coherently adorned because \(Y \) is associated with the two different adornment symbols \(f_1 \) and \(\varepsilon \)
Adornment Algorithm

Original program

\begin{align*}
p(X, f(X)) & \leftarrow base(X) \\
p(X, f(X)) & \leftarrow p(Y, X), base(Y) \\
p(X, Y) & \leftarrow p(f(X), f(Y))
\end{align*}

Adorned program

\begin{align*}
p^{\varepsilon f_1}(X, f(X)) & \leftarrow base^\varepsilon (X) \\
p^{f_1 f_2}(X, f(X)) & \leftarrow p^{\varepsilon f_1}(Y, X), base^\varepsilon (Y) \\
p^{\varepsilon f_1}(X, Y) & \leftarrow p^{f_1 f_2}(f(X), f(Y))
\end{align*}

Adorned predicate symbols

\begin{align*}
base^\varepsilon & \\
p^{\varepsilon f_1} & \\
p^{f_1 f_2} &
\end{align*}

Adornment definitions

\begin{align*}
f_1 & = f(\varepsilon) \\
f_2 & = f(f_1)
\end{align*}

\(p^{\varepsilon f_1}(f(X), f(Y)) \) is not coherently adorned because \(f(X) \) does not comply with the term structure described by \(\varepsilon \)
Adornment Algorithm

Original program

\[p(X, f(X)) \leftarrow \text{base}(X) \]
\[p(X, f(X)) \leftarrow p(Y, X), \text{base}(Y) \]
\[p(X, Y) \leftarrow p(f(X), f(Y)) \]

Adorned program

\[p^{\epsilon f_1}(X, f(X)) \leftarrow \text{base}^\epsilon(X) \]
\[p^{f_1 f_2}(X, f(X)) \leftarrow p^{\epsilon f_1}(Y, X), \text{base}^\epsilon(Y) \]
\[p^{\epsilon f_1}(X, Y) \leftarrow p^{f_1 f_2}(f(X), f(Y)) \]

• Both the original and the adorned programs are recursive.

• But while none of the current criteria realize that the bottom-up evaluation of the original program terminates, some of them realize that the evaluation of the adorned program ends.

• This in turn allows us to say that the evaluation of the original program terminates too.
Adornment Algorithm

Original program

\[p(X) \leftarrow base(X) \]
\[p(f(X)) \leftarrow p(X) \]
Adornment Algorithm

Original program

\[p(X) \leftarrow \text{base}(X) \]
\[p(f(X)) \leftarrow p(X) \]

Adorned program

Adorned predicate symbols

\[\text{base}^e \]

Adornment definitions
Adornment Algorithm

Original program

\[
\begin{align*}
 p(X) & \leftarrow \text{base}(X) \\
 p(f(X)) & \leftarrow p(X)
\end{align*}
\]

Adorned program

Adorned predicate symbols

\[\text{base}^e\]

Adornment definitions
Adornment Algorithm

Original program

\[
\begin{align*}
p(X) & \leftarrow base(X) \\
p(f(X)) & \leftarrow p(X)
\end{align*}
\]

Adorned program

\[
\leftarrow base^\epsilon(X)
\]
Adornment Algorithm

Original program

\[p(X) \leftarrow \text{base}(X) \]
\[p(f(X)) \leftarrow p(X) \]

Adorned program

\[p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X) \]

Adorned predicate symbols

\[\text{base}^\varepsilon \]
\[p^\varepsilon \]

Adornment definitions
Adornment Algorithm

Original program

\[p(X) \leftarrow \text{base}(X) \]
\[p(f(X)) \leftarrow p(X) \]

Adorned program

\[p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X) \]

Adorned predicate symbols

\[\text{base}^\varepsilon \]
\[p^\varepsilon \]

Adornment definitions
Adornment Algorithm

Original program

\[
p(X) \leftarrow \text{base}(X)
\]

\[
p(f(X)) \leftarrow p(X)
\]

Adorned program

\[
p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X)
\]

Adorned predicate symbols

- \(\text{base}^\varepsilon\)
- \(p^\varepsilon\)

Adornment definitions
Adornment Algorithm

Original program

\[p(X) \leftarrow \text{base}(X) \]

\[p(f(X)) \leftarrow p(X) \]

Adorned program

\[p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X) \]

\[\leftarrow p^\varepsilon(X) \]
Adornment Algorithm

Original program

\[
p(X) \leftarrow base(X)
\]

\[
p(f(X)) \leftarrow p(X)
\]

Adorned program

\[
p^\varepsilon(X) \leftarrow base^\varepsilon(X)
\]

\[
p^{f_1}(f(X)) \leftarrow p^\varepsilon(X)
\]

Adorned predicate symbols

\[
\text{base}^\varepsilon
\]

\[
p^\varepsilon
\]

\[
p^{f_1}
\]

Adornment definitions

\[
f_1 = f(\varepsilon)
\]
Adornment Algorithm

Original program

\[
\begin{align*}
p(X) & \leftarrow base(X) \\
p(f(X)) & \leftarrow p(X)
\end{align*}
\]

Adorned program

<table>
<thead>
<tr>
<th>Adorned predicate symbols</th>
<th>Adornment definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^\epsilon (X) \leftarrow base^\epsilon (X))</td>
<td>(base^\epsilon)</td>
</tr>
<tr>
<td>(p^{f_1}(f(X)) \leftarrow p^\epsilon (X))</td>
<td>(p^\epsilon)</td>
</tr>
<tr>
<td>(p^{f_2}(f(X)) \leftarrow p^{f_1}(X))</td>
<td>(p^{f_1})</td>
</tr>
<tr>
<td>(f_1 = f(\epsilon))</td>
<td></td>
</tr>
<tr>
<td>(p^{f_3}(f(X)) \leftarrow p^{f_2}(X))</td>
<td>(p^{f_2})</td>
</tr>
<tr>
<td>(f_2 = f(f_1))</td>
<td></td>
</tr>
<tr>
<td>(p^{f_4}(f(X)) \leftarrow p^{f_3}(X))</td>
<td>(p^{f_3})</td>
</tr>
<tr>
<td>(f_3 = f(f_2))</td>
<td></td>
</tr>
<tr>
<td>(p^{f_4})</td>
<td></td>
</tr>
<tr>
<td>(f_4 = f(f_3))</td>
<td></td>
</tr>
</tbody>
</table>
Adornment Algorithm

Original program

\[p(X) \leftarrow \text{base}(X) \]
\[p(f(X)) \leftarrow p(X) \]

Adorned program

<table>
<thead>
<tr>
<th>Adorned predicate symbols</th>
<th>Adornment definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^\varepsilon (X) \leftarrow \text{base}^\varepsilon (X))</td>
<td>(\text{base}^\varepsilon)</td>
</tr>
<tr>
<td>(p^{f_1}(f(X)) \leftarrow p^\varepsilon (X))</td>
<td>(p^{f_1})</td>
</tr>
<tr>
<td>(p^{f_2}(f(X)) \leftarrow p^{f_1}(X))</td>
<td>(p^{f_2})</td>
</tr>
<tr>
<td>(p^{f_3}(f(X)) \leftarrow p^{f_2}(X))</td>
<td>(p^{f_3})</td>
</tr>
<tr>
<td>(p^{f_4}(f(X)) \leftarrow p^{f_3}(X))</td>
<td>(p^{f_4})</td>
</tr>
</tbody>
</table>

- \(f_1 = f(\varepsilon) \)
- \(f_2 = f(f_1) \)
- \(f_3 = f(f_2) \)
- \(f_4 = f(f_3) \)

- By replacing \(f_4 \) with \(f_2 \) and \(f_3 \) with \(f_1 \) in the last rule, we get the third rule
- We apply such substitutions everywhere
Adorned Algorithm

Original program

\[p(X) \leftarrow base(X) \]
\[p(f(X)) \leftarrow p(X) \]

Adorned program

\[p^ε(X) \leftarrow base^ε(X) \]
\[p^{f_1}(f(X)) \leftarrow p^ε(X) \]
\[p^{f_2}(f(X)) \leftarrow p^{f_1}(X) \]
\[p^{f_3}(f(X)) \leftarrow p^{f_2}(X) \]
\[p^{f_4}(f(X)) \leftarrow p^{f_3}(X) \]

Adorned predicate symbols

- \(p^ε \)
- \(p^{f_1} \)
- \(p^{f_2} \)
- \(p^{f_3} \)
- \(p^{f_4} \)
- \(base^ε \)

Adornment definitions

- \(\forall f_1 = f(ε) \)
- \(\forall f_2 = f(f_1) \)
- \(\forall f_3 = f(f_2) \)
- \(\forall f_4 = f(f_3) \)

• By replacing \(f_4 \) with \(f_2 \) and \(f_3 \) with \(f_1 \) in the last rule, we get the third rule
• We apply such substitutions everywhere
Adornment Algorithm

Original program

\[
p(X) \leftarrow base(X) \\
p(f(X)) \leftarrow p(X)
\]

Adorned program

\[
\begin{align*}
p^{\varepsilon}(X) & \leftarrow base^{\varepsilon}(X) \\
p^{f_1}(f(X)) & \leftarrow p^{\varepsilon}(X) \\
p^{f_2}(f(X)) & \leftarrow p^{f_1}(X) \\
p^{f_3}(f(X)) & \leftarrow p^{f_2}(X) \\
p^{f_4}(f(X)) & \leftarrow p^{f_3}(X)
\end{align*}
\]

Adorned predicate symbols

<table>
<thead>
<tr>
<th>(base^\varepsilon)</th>
<th>(p^\varepsilon)</th>
<th>(p^{f_1})</th>
<th>(p^{f_2})</th>
<th>(p^{f_3})</th>
<th>(p^{f_4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1 = f(\varepsilon))</td>
<td>(f_2 = f(f_1))</td>
<td>(f_3 = f(f_2))</td>
<td>(f_4 = f(f_3))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- By replacing \(f_4\) with \(f_2\) and \(f_3\) with \(f_1\) in the last rule, we get the third rule
- We apply such substitutions everywhere
Adornment Algorithm

Original program

\[
p(X) \leftarrow \text{base}(X)
\]
\[
p(f(X)) \leftarrow p(X)
\]

Adorned program

\[
p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X)
\]
\[
p_{f_1}(f(X)) \leftarrow p^\varepsilon(X)
\]
\[
p_{f_2}(f(X)) \leftarrow p_{f_1}(X)
\]
\[
p_{f_3}(f(X)) \leftarrow p_{f_2}(X) \quad p_{f_1}(f(X)) \leftarrow p_{f_2}(X)
\]
\[
p_{f_4}(f(X)) \leftarrow p_{f_3}(X)
\]

Adorned predicate symbols

| base^\varepsilon | p^\varepsilon | p_{f_1} | p_{f_2} | f_1 = f(\varepsilon) | f_2 = f(f_1) | f_3 = f(f_2) | f_4 = f(f_3) |

Adornment definitions

- By replacing \(f_4\) with \(f_2\) and \(f_3\) with \(f_1\) in the last rule, we get the third rule
- We apply such substitutions everywhere
Adornment Algorithm

Original program

\[
p(X) \leftarrow \text{base}(X) \\
p(f(X)) \leftarrow p(X)
\]

Adorned program

\[
p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X) \\
p^f_1(f(X)) \leftarrow p^\varepsilon(X) \\
p^f_2(f(X)) \leftarrow p^f_1(X) \\
p^f_1(f(X)) \leftarrow p^f_2(X)
\]

Adorned predicate symbols

\[
\text{base}^\varepsilon \\
p^\varepsilon \\
p^f_1 \\
p^f_2
\]

Adornment definitions

\[
f_1 = f(\varepsilon) \\
f_2 = f(f_1) \\
f_1 = f(f_2)
\]

At this point we are not able to generate new rules with the available adorned predicate symbols and the algorithm terminates.
Adornment Algorithm

Original program

\[p(X) \leftarrow \text{base}(X) \]
\[p(f(X)) \leftarrow p(X) \]

Adorned program

\[p^\varepsilon(X) \leftarrow \text{base}^\varepsilon(X) \]
\[p^f_1(f(X)) \leftarrow p^\varepsilon(X) \]
\[p^f_2(f(X)) \leftarrow p^f_1(X) \]
\[p^f_1(f(X)) \leftarrow p^f_2(X) \]

The bottom-up evaluation of both programs does not terminate.

Thus, none of them is recognized as finitely-ground.

However, the adornment algorithm terminates.
General programs

- A logic program P with disjunction (in the head) and negation (in the body) is transformed into a positive normal program $st(P)$ as follows.

Every rule $A_1 \lor A_2 \lor \ldots \lor A_n \leftarrow body$ in P is replaced by n positive normal rules:

\[
\begin{align*}
A_1 & \leftarrow body^+ \\
A_2 & \leftarrow body^+ \\
& \ldots \\
A_n & \leftarrow body^+
\end{align*}
\]

where $body^+$ is obtained from $body$ by deleting all negative literals.

- We then apply the adornment algorithm to $st(P)$
Properties

• **Theorem 1.** The adornment algorithm $Adorn$ always terminates.

• **Theorem 2.** Let P be a positive normal program and $P' = Adorn(P)$. The minimal model of P is equal to the minimal model of P' with adornments dropped from predicate symbols.

• **Theorem 3.** Given a positive normal program P, if $Adorn(P)$ satisfies a criterion C, then $P \cup D$ is finitely-ground for any finite set of database facts D.
Properties

• **Theorem 4.** Given a (general) program P, if $\text{Adorn}(st(P))$ satisfies a criterion C, then $P \cup D$ is finitely-ground for any finite set of database facts D.

• **Theorem 5.** By applying a criterion to adorned programs (rather than the original ones) we are able to recognize more programs as finitely-ground.
Conclusions

• Adornment algorithm to be used in conjunction with current criteria
 – First apply the adornment algorithm to the original program, then apply a criterion to the adorned program.
 – In this way, (strictly) more programs are recognized as finitely-ground.
Thanks!

Questions?