Integration Schemas for Constraint Answer Set Programming: a Case Study

Marcello Balduccini
Drexel University

Yulia Lierler
University of Nebraska at Omaha
Introduction

- Different KR&R techniques for different domains
- Planning: ASP
- Scheduling: CP
- Scheduling + Planning: ?

- Possible solution:
 - Hybrid approaches
 - Satisfiability modulo theories (SMT)
 - Constraint answer set programming (CASP)
CASP

- Modeling capabilities of ASP
- SAT-like solving technology
- Constraint processing for non-Boolean constructs

- Multiple CASP solvers:
 - ACSolver
 - Clingcon
 - EZCSP
 - IDP

- Applications:
 - Commercial printing
 - Robotics
Motivation

- Similarities and differences between CASP solvers are unclear
- Implications of integration schemas used are unclear
 - EZCSP: black-box architecture
 - ACSolver, clingcon: tighter integration
- Development of CASP solvers is hard
 - Requires expertise in SAT, ASP, CSP areas

- Principled and general study of development methods needed
- Need for standardized techniques to integrate computational methods from multiple research areas
In This Paper

• Case study of CASP integration schemas and their performance
• 3 integration schemas
 – Black-box
 – Grey-box
 – Clear-box
• 2 domains from ASPCOMP 2011
 – Weighted Sequence
 – Incremental Scheduling
• 3 types of encodings
 – Pure ASP
 – True CASP
 – Pure CSP
Generally, rules are of the form:
\[l_0 \leftarrow l_1, \ldots, l_k, \text{not } l_{k+1}, \ldots, \text{not } l_m \]
- \(l_i \): regular or constraint atoms

Example: \(p \leftarrow q, x > 2 \).

Semantics (intuition):
1. Constraint atom \(c \) treated as regular atom; \(\Pi' \) is \(\Pi + \) choice rules \(\{c\} \)
2. \(A \) is answer set of \(\Pi \) if \(A \) is answer set of \(\Pi' \) and \(A \) satisfies all relevant constraint atoms
Integration Schemas Considered

- **Black-box**
 - ASP solver finds an answer set, A, and **terminates**
 - CP solver checks if constraint atoms of A have a solution
 - No a solution: denials added to Π and ASP solver is **called again**
 - **Pros**: solver-independent implementation; CP solver called rarely
 - **Cons**: full answer set must be computed; ASP search space discarded

- **Grey-box**
 - ASP solver finds an answer set, A, and is **suspended**
 - CP solver checks if constraint atoms of A have a solution
 - No a solution: ASP solver is **resumed** and looks for another answer set
 - **Pros**: CP solver called rarely; ASP search space re-used
 - **Cons**: slight dependence on ASP solver API; full answer set must be computed

- **Clear-box**
 - ASP and CP solver are interleaved:
 - While ASP solver computes an answer set, A, and **suspended**
 - If constraint atoms of P have no solution, CP triggers backtracking in ASP
 - **Pros**: early pruning; ASP and CP search space are re-used
 - **Cons**: complete dependence on ASP and CP solver APIs; CP solver called often
Encodings Considered

- Encodings can be written to rely on solving capabilities of either side
- Pure ASP
 - Constraint atoms not used
- Pure CSP
 - ASP component is trivial (e.g. no loops through negation, no choice rules)
- True CASP
 - Both ASP and CP component are non-trivial
Experiments

• EZCSP used as testbed
 – Extended to support black-box, grey-box and clear-box integration schemas
 – MiniSAT API used for grey-box and clear-box
• Also compared with cmodels and clingcon
• ASPCOMP11 domains:
 – Weighted-sequence
 – Incremental scheduling
Experimental Results

Instances
- Weighted sequence:
 - 30, ASPCOMP11
- Incremental scheduling:
 - 50, ASPCOMP11: easy, in paper
 - 30, manual: hard, shown here

Timeout: 6,000 seconds
Conclusions

• Best integration schema is domain-dependent
• Finer-grained schemas may be useful
 – Between grey-box and clear-box
• Hybrid systems should support various integration schemas
 – Standardized, flexible APIs for ASP and CP solvers are necessary
• Solvers and problem instances available online

http://www.mbaluccini.tk/ezcsp/aspocp2013/ezcsp-binaries.tgz
http://www.mbaluccini.tk/ezcsp/aspocp2013/experiments.tgz