Finding Optimal Plans for Multiple Teams of Robots through a Mediator: A Logic-Based Approach

Esra Erdem, Volkan Patoglu, Zeynep G. Saribatur, Peter Schüller, Tansel Uras
Motivation

- Conventional manufacturing systems fall short of responding to demands.
- New approaches for automated fabrication become crucial.
- Cognitive factories are aimed towards manufacturing plants. They rapidly respond to changing customer needs and customization requests.
Cognitive Factories

Advantages:
- High-level reasoning
- Sophisticated planning and decision-making algorithms
Cognitive Factories

Challenges:

- Coordination between multiple teams of robots
- Achieve overall shortest delivery time
The Problem and Our Goal

We have multiple teams of robots:

- Each team is given a feasible task to complete.
- Teams can transfer robots between each other.

Constraints:

C1 Teams do not know each other’s information

C2 Lending/borrowing robots between workspaces back and forth is not desired.
 Robots can be transferred between two teams in a single batch.

Our goal:

- To find an optimal global plan for all teams.
Finding an optimal global plan for all teams, with at most k steps, subject to constraints [C1] and [C2], through a mediator.
Our Method
First Phase

- For every $\bar{l} \leq k$:
 1. The mediator asks yes/no questions to every team.
 2. The mediator tries to find a *coordination* of the teams.

- A coordination for the optimal value of \bar{l} is found.
For the optimal value of $\bar{\gamma}$:

1. The mediator informs each team.
2. Each team computes an optimal local plan.

An optimal global plan for all teams is the union of all optimal local plans.
For every $l \leq \bar{l}$ and $m \leq \bar{m}$:

Q1 Can you complete your task in \bar{l} steps?

Q2 Can you complete your task in \bar{l} steps, if you lend m robots before step l?

Q3 Can you complete your task in \bar{l} steps, if you borrow m robots after step l?
First Phase
Coordination of Teams

We introduce:

- \(Lend_earliest_m : Lenders \rightarrow \{0, ..., \bar{l}\} \)
- \(Borrow_latest_m : Borrowers \rightarrow \{0, ..., \bar{l}\} \)
- Delay time:
 - \(Delay : Lenders \times Borrowers \rightarrow \mathbb{N} \)

We define:

- Collaboration between \(Lenders \) and \(Borrowers \)
A collaboration is a function:

$$f : Lenders \times Borrowers \rightarrow \{0, ..., \bar{I}\} \times \{0, ..., \bar{m}\}$$

such that the followings hold:

- A borrower does not borrow fewer robots than it needs.
- A lender does not lend more robots than it can.
Example Scenario

- $\text{Lend}_{\text{earliest}}_m$ and $\text{Borrow}_{\text{latest}}_m$
- $\text{Delay}(i, j) = |i - j|$
Example Scenario

- **Collaboration function:**
 \[f(1, 3) = (3, 1), \ f(1, 4) = (3, 1), \ f(2, 4) = (2, 1) \]
First Phase
Find-Collaboration

Input For a set *Lenders*, a set *Borrowers*, positive integers \(\bar{l} \) and \(\bar{m} \), a delay function *Delay* and a collection of *Lend_earliest_m* and *Borrow_latest_m* for every positive integer \(m (m \leq \bar{m}) \).

Output A collaboration between *Lenders* and *Borrowers* with at most \(\bar{m} \) robot transfers and within at most \(\bar{l} \) steps, relative to *Delay*.
First Phase
Find-Collaboration

Input For a set Lenders, a set Borrowers, positive integers \bar{l} and \bar{m}, a delay function Delay and a collection of Lend_earliest$_m$ and Borrow_latest$_m$ for every positive integer m ($m \leq \bar{m}$).

Output A collaboration between Lenders and Borrowers with at most \bar{m} robot transfers and within at most \bar{l} steps, relative to Delay.

Theorem
The decision version of Find-Collaboration is NP-complete.
Our Method
First Phase

For every $\bar{l} \leq k$:

1. The mediator asks yes/no questions to every team.
2. The mediator tries to find a *coordination* of the teams.

A coordination for the optimal value of \bar{l} is found.
Our Method
First Phase - Automated Reasoners

- For every $\bar{l} \leq k$:
 1. The mediator asks yes/no questions to every team.
 - Method: The domain is represented in C+ (Erdem et al. 2012).
 Each query is a planning problem with temporal constraints.
 The formulation is transformed into ASP using the tool Cplus2ASP
 (Casolary and Lee 2011).
 - Automated reasoner: ASP solver
 2. The mediator tries to find a *coordination* of the teams.
 - Method: The problem is represented in ASP.
 - Automated reasoner: ASP solver

- A coordination for the optimal value of \bar{l} is found.
 - Linear search, as suggested in (Trejo et al. 2001).
% lender I lends U robots to borrower J at step L
\{ f(I,J,L,U) : step(L): num(U) \} 1 :- borrower(J), lender(I).

% a borrower team does not borrow fewer robots than it needs
condition_borrower(J) :-
 % borrower J needs at least M robots until step L
borrow_latest(J,M,L), borrower(J), step(L), num(M),
% the latest step that J borrows robots should be at most L
#max[f(I,J,L1,U)=L1+T:lender(I):num(U):delay(I,J,T)] L,
% the total number of robots J borrows should be at least M
M [f(I,J,L1,U)=U:lender(I):step(L1)].

:- not condition_borrower(J), borrower(J).
Our Method

Representation of the Coordination Problem in ASP

% lender I lends U robots to borrower J at step L
\{f(I,J,L,U) : step(L): num(U) \} 1 :- borrower(J), lender(I).

...

% a lender team does not lend more robots than it can
condition_lender(I) :-
 % lender I can lend at most M robots after step L
 lend_earliest(I,M,L),lender(I), step(L), num(M),
 % the earliest step that I lends robots should be at least L
 L #min[f(I,J,L1,U)=L1:borrower(J):num(U)],
 % the total number of robots I lends should be at most M
 [f(I,J,L1,U)=U:borrower(J):step(L1)] M.

:- not condition_lender(I), lender(I).
Our Method
Second Phase

- For the optimal value of $\bar{\bar{a}}$:
 1. The mediator informs each team.
 2. Each team computes an optimal local plan.

- An optimal global plan for all teams is the union of all optimal local plans.
Our Method
Second Phase - Automated Reasoners

- For the optimal value of \bar{l}:
 1. The mediator informs each team.
 2. Each team computes an optimal local plan.
 - Automated reasoner: ASP solvers

- An optimal global plan for all teams is the union of all optimal local plans.
We performed some experiments in a Painting Factory domain.
Experiments

- We performed some experiments in a Painting Factory domain.

Solvers

- Clasp version 2.1.3 (with Gringo version 3.0.4)
Experimental results for six scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Teams</th>
<th>Workspace (grid cells)</th>
<th>Worker Robots</th>
<th>Total Robots</th>
<th>Order (boxes)</th>
<th>Questions (total)</th>
<th>Answering Questions (average time)</th>
<th>Finding Collaboration (average time)</th>
<th>Optimal Global Plan (with collaboration) length</th>
<th>Optimal Global Plan (without collaboration) length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>15</td>
<td>1,2</td>
<td>5</td>
<td>6</td>
<td>212</td>
<td>3.96</td>
<td>< 0.1</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>1,2,3</td>
<td>9</td>
<td>9</td>
<td>437</td>
<td>3.92</td>
<td>< 0.1</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>15</td>
<td>1,2,3,4</td>
<td>15</td>
<td>12</td>
<td>525</td>
<td>1.82</td>
<td>< 0.1</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
<td>2,4</td>
<td>8</td>
<td>8</td>
<td>127</td>
<td>4.76</td>
<td>< 0.1</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>24</td>
<td>2,4,6</td>
<td>18</td>
<td>12</td>
<td>171</td>
<td>5.37</td>
<td>< 0.1</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>24</td>
<td>2,4,6,8</td>
<td>30</td>
<td>16</td>
<td>293</td>
<td>79.96</td>
<td>< 0.1</td>
<td>18</td>
<td>29</td>
</tr>
</tbody>
</table>
Experimental results for six scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Teams</th>
<th>Workspace (grid cells)</th>
<th>Worker Robots</th>
<th>Total Robots</th>
<th>Order (boxes)</th>
<th>Questions (total)</th>
<th>Answering Questions (average time)</th>
<th>Finding Collaboration (average time)</th>
<th>Optimal Global Plan (with collaboration)</th>
<th>Optimal Global Plan (without collaboration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>15</td>
<td>1,2</td>
<td>5</td>
<td>6</td>
<td>212</td>
<td>3.96</td>
<td>< 0.1</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>1,2,3</td>
<td>9</td>
<td>9</td>
<td>437</td>
<td>3.92</td>
<td>< 0.1</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>15</td>
<td>1,2,3,4</td>
<td>15</td>
<td>12</td>
<td>525</td>
<td>1.82</td>
<td>< 0.1</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
<td>2,4</td>
<td>8</td>
<td>8</td>
<td>127</td>
<td>4.76</td>
<td>< 0.1</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>24</td>
<td>2,4,6</td>
<td>18</td>
<td>12</td>
<td>171</td>
<td>5.37</td>
<td>< 0.1</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>24</td>
<td>2,4,6,8</td>
<td>30</td>
<td>16</td>
<td>293</td>
<td>79.96</td>
<td>< 0.1</td>
<td>18</td>
<td>29</td>
</tr>
</tbody>
</table>
Simulation
Related Work

Decoupling plans of multiple agents to coordinate their actions: (M. M. de Weerdt 2009)

- Coordination before planning: Social laws (Shoham and Tennenholtz 1995; ter Mors et al. 2004).
- Coordination during planning:
 - Partial Global Planning (PGP) framework (Durfee and Lesser 1987).
 - The Plan Merging Paradigm (Alami et al. 1998).
- Coordination after planning:
 - Plan-synchronization process starting with individual plans (Georgeff 1988).
 - Introducing restrictions on individual plans (Yang et al. 1992; Foulser et al. 1992).
 - Using A* search with a smart cost-based heuristic (Ephrati and Rosenschein 1993).
Conclusion

- We introduced a method to find an optimal global plan.
- We defined the problem of determining a coordination, and proved its intractability.
- We evaluated the usefulness of our approach in a cognitive factory setting using the state-of-the-art ASP solvers, and observed a promising decrease in the total process time.
Experimental results for six scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Teams</th>
<th>Workspace (grid cells)</th>
<th>Worker Robots</th>
<th>Total Robots</th>
<th>Order (boxes)</th>
<th>Questions (total)</th>
<th>Questions (ave. time ASP)</th>
<th>Questions (ave. time CCalc)</th>
<th>Finding Collaboration (average time)</th>
<th>Optimal Global Plan (with collaboration)</th>
<th>Optimal Global Plan (without collaboration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>15</td>
<td>1,2</td>
<td>5</td>
<td>6</td>
<td>212</td>
<td>3.96</td>
<td>6.67</td>
<td>< 0.1</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>1,2,3</td>
<td>9</td>
<td>9</td>
<td>437</td>
<td>3.92</td>
<td>6.13</td>
<td>< 0.1</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>15</td>
<td>1,2,3,4</td>
<td>15</td>
<td>12</td>
<td>525</td>
<td>1.82</td>
<td>3.36</td>
<td>< 0.1</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
<td>2,4</td>
<td>8</td>
<td>8</td>
<td>127</td>
<td>4.76</td>
<td>7.91</td>
<td>< 0.1</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>24</td>
<td>2,4,6</td>
<td>18</td>
<td>12</td>
<td>171</td>
<td>5.37</td>
<td>13.08</td>
<td>< 0.1</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>24</td>
<td>2,4,6,8</td>
<td>30</td>
<td>16</td>
<td>293</td>
<td>79.96</td>
<td>151.33</td>
<td>< 0.1</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>Scenario</td>
<td>Search Method</td>
<td>Teams</td>
<td>Workspace (grid cells)</td>
<td>Worker Robots</td>
<td>Total Robots</td>
<td>Order (boxes)</td>
<td>Questions (total)</td>
<td>Answering time CCalc</td>
<td>Finding Collaboration (ave. time)</td>
<td>Optimal Global Plan (with collaboration)</td>
<td>Optimal Global Plan (without collaboration)</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1 2 15</td>
<td>linear team: binary</td>
<td>1,2</td>
<td>5</td>
<td>6</td>
<td>212</td>
<td>6.67</td>
<td><0.1</td>
<td>30</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3 15</td>
<td>linear team: binary</td>
<td>1,2,3,</td>
<td>9</td>
<td>9</td>
<td>437</td>
<td>6.13</td>
<td><0.1</td>
<td>25</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 4 15</td>
<td>linear team: binary</td>
<td>1,2,3,4</td>
<td>15</td>
<td>12</td>
<td>525</td>
<td>3.36</td>
<td><0.1</td>
<td>21</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2 24</td>
<td>linear team: binary</td>
<td>2,4</td>
<td>8</td>
<td>8</td>
<td>127</td>
<td>7.91</td>
<td><0.1</td>
<td>20</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 3 24</td>
<td>linear team: binary</td>
<td>2,4,6</td>
<td>18</td>
<td>12</td>
<td>171</td>
<td>13.08</td>
<td><0.1</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 24</td>
<td>linear team: binary</td>
<td>2,4,6,8</td>
<td>30</td>
<td>16</td>
<td>291</td>
<td>151.33</td>
<td><0.1</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 15</td>
<td>binary team: binary</td>
<td>1,2</td>
<td>5</td>
<td>6</td>
<td>100</td>
<td>8.78</td>
<td><0.1</td>
<td>30</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3 15</td>
<td>binary team: binary</td>
<td>1,2,3,</td>
<td>9</td>
<td>9</td>
<td>187</td>
<td>9.96</td>
<td><0.1</td>
<td>25</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 4 15</td>
<td>binary team: binary</td>
<td>1,2,3,4</td>
<td>15</td>
<td>12</td>
<td>310</td>
<td>7.78</td>
<td><0.1</td>
<td>21</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2 24</td>
<td>binary team: binary</td>
<td>2,4</td>
<td>8</td>
<td>8</td>
<td>163</td>
<td>215.13</td>
<td><0.1</td>
<td>20</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 3 24</td>
<td>binary team: binary</td>
<td>2,4,6</td>
<td>18</td>
<td>12</td>
<td>210</td>
<td>224.32</td>
<td><0.1</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 24</td>
<td>binary team: binary</td>
<td>2,4,6,8</td>
<td>30</td>
<td>16</td>
<td>351</td>
<td>283.63</td>
<td><0.1</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 15</td>
<td>binary team: linear</td>
<td>1,2</td>
<td>5</td>
<td>6</td>
<td>287</td>
<td>7.35</td>
<td><0.1</td>
<td>30</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3 15</td>
<td>binary team: linear</td>
<td>1,2,3,</td>
<td>9</td>
<td>9</td>
<td>411</td>
<td>7.56</td>
<td><0.1</td>
<td>25</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 4 15</td>
<td>binary team: linear</td>
<td>1,2,3,4</td>
<td>15</td>
<td>12</td>
<td>772</td>
<td>5.78</td>
<td><0.1</td>
<td>21</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2 24</td>
<td>binary team: linear</td>
<td>2,4</td>
<td>8</td>
<td>8</td>
<td>382</td>
<td>67.39</td>
<td><0.1</td>
<td>20</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 3 24</td>
<td>binary team: linear</td>
<td>2,4,6</td>
<td>18</td>
<td>12</td>
<td>480</td>
<td>82.49</td>
<td><0.1</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 4 24</td>
<td>binary team: linear</td>
<td>2,4,6,8</td>
<td>30</td>
<td>16</td>
<td>879</td>
<td>147.26</td>
<td><0.1</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E. Erdem, K. Haspalamutgil, V. Patoglu, and T. Uras
Causality-based planning and diagnostic reasoning for cognitive factories

Casolary, M. and Lee, J.
Representing the language of the causal calculator in answer set programming

Trejo, R., Galloway, J., Sachar, C., Kreinovich, V., Baral, C., and Tuan, L.-C.
From planning to searching for the shortest plan: An optimal transition.

M. M. de Weerdt, B. J. Clement
Introduction to Planning in Multiagent Systems.
Y. Shoham and M. Tennenholtz
On social laws for artificial agent societies: Off-line design
Artificial Intelligence, 73, 231-252, 1995.

A. ter Mors and J. Valk and C. Witteveen
Coordinating autonomous planners
Proc. of IC-AI, 795–801, 2004

E. H. Durfee and V. R. Lesser
Planning coordinated actions in dynamic domains

Rachid Alami and Felix Ingrand and Samer Qutub
A Scheme for Coordinating Multi-robots Planning Activities and Plans Execution
References III

M. P. Georgeff
Communication and interaction in multi-agent planning

Q. Yang and D. S. Nau and J. Hendler
Merging separately generated plans with restricted interactions
Computational Intelligence, 8, 648–676, 1992.

D. Foulser and M. Li and Q. Yang
Theory and algorithms for plan merging

E. Ephrati and J. S. Rosenschein
Multi-agent planning as the process of merging distributed sub-plans