Combining Decidability Paradigms for Existential Rules

Georg Gottlob1 Marco Manna2 Andreas Pieris1

1Department of Computer Science, University of Oxford, UK
2Department of Mathematics, University of Calabria, Italy

ICLP 2013, Istanbul, August 26
Ontological Query Answering

\[\langle D, O \rangle \models \text{Query} \iff D \land O \models \text{Query} \]
Ontological Query Answering: Example

\[D = \text{person}(\text{john}) \quad O = \{ \forall P \text{ person}(P) \rightarrow \exists F \text{ father}(F,P) \}
\]

\[\forall M \models \langle D, O \rangle = \{ \forall F \forall P \text{ father}(F,P) \rightarrow \text{person}(P) \}
\]

\[\forall M \models \langle D, O \rangle = \{ \text{father}(z,\text{john}) \text{ person}(z) \} \]
Ontological Query Answering: Example

\[D = \text{person}(\text{john}) \quad O = \begin{align*} &\forall P \text{ person}(P) \rightarrow \exists F \text{ father}(F, P) \\ &\forall F \forall P \text{ father}(F, P) \rightarrow \text{person}(P) \end{align*} \]

\[\forall M \models \langle D, O \rangle = \begin{align*} &\exists x \text{ father}(x, \text{john}) \land \text{person}(x) \end{align*} \]
Ontological Query Answering: Example

\[D = \text{person}(\text{john}) \]

\[O = \forall P \text{ person}(P) \rightarrow \exists F \text{ father}(F,P) \]
\[\forall F \forall P \text{ father}(F,P) \rightarrow \text{person}(P) \]

\[\forall M \models \langle D, O \rangle = \ldots \text{father}(z, \text{john}) \text{ person}(z) \ldots \]

\[\exists x \text{ father}(x, \text{john}) \land \text{person}(x) \]

\[\exists x \text{ father}(\text{john}, x) \]

\[\checkmark \]

\[\times \]
Ontology and Query Language

\[\forall X \varphi(X) \rightarrow \exists Y \psi(X,Y) \]

\[\exists X \varphi(X) \]
Existential Rules: The Key Property

Existence of a universal model of $\langle D, O \rangle$

\[
\forall M \ (M \models \langle D, O \rangle \Rightarrow U \xrightarrow{\text{hom}} M)
\]
Existential Rules: The Key Property

\[\langle D, O \rangle \models Q \iff U \models Q \]
The Chase Procedure

Input: Database \(D \), ontology \(O \)

Output: A universal model of \(\langle D, O \rangle \)

\[
D = \text{person(john)}
\]

\[
O = \text{person}(P) \rightarrow \exists F \text{ father}(F,P) \quad \text{father}(F,P) \rightarrow \text{person}(F)
\]

\[
\text{chase}(D,O) = D \cup ?
\]
The Chase Procedure

Input: Database \(D \), ontology \(O \)
Output: A universal model of \(\langle D, O \rangle \)

\[
D = \{ \text{person(john)} \}
\]

\[
O = \begin{align*}
\text{person}(P) & \rightarrow \exists F \text{ father}(F,P) \\
\text{father}(F,P) & \rightarrow \text{person}(F)
\end{align*}
\]

\[
\text{chase}(D,O) = D \cup \{ \text{father}(z_1,\text{john}) \}
\]
The Chase Procedure

Input: Database D, ontology O

Output: A universal model of $\langle D, O \rangle$

\[
D = \{ \text{person(john)} \}
\]

\[
O = \text{person}(P) \rightarrow \exists F \text{ father}(F,P) \quad \text{father}(F,P) \rightarrow \text{person}(F)
\]

\[
\text{chase}(D,O) = D \cup \{ \text{father}(z_1,\text{john}), \text{person}(z_1) \}
\]
The Chase Procedure

Input: Database D, ontology O

Output: A universal model of $\langle D, O \rangle$

$D \ = \ \text{person(john)}$

$O \ = \ \text{person}(P) \rightarrow \exists F \ \text{father}(F,P) \quad \text{father}(F,P) \rightarrow \text{person}(F)$

$\text{chase}(D,O) = D \cup \{ \text{father}(z_1,john), \text{person}(z_1), \text{father}(z_2,z_1) \}$
The Chase Procedure

Input: Database D, ontology O

Output: A universal model of $\langle D, O \rangle$

\[
D = \{ \text{person(john)} \}
\]

\[
O = \{ \text{person}(P) \rightarrow \exists F \, \text{father}(F, P), \text{father}(F, P) \rightarrow \text{person}(F) \}
\]

\[
\text{chase}(D, O) = D \cup \{ \text{father}(z_1, \text{john}), \text{person}(z_1), \text{father}(z_2, z_1), \ldots \}
\]

least fixpoint
In general is infinite

\[D = \{ p(a,b) \} \quad p(X,Y) \rightarrow \exists Z p(Y,Z) \]

Solution = \{ p(a,b), p(b,z_1), p(z_1,z_2), p(z_2,z_3), \ldots \}

Query answering under existential rules is undecidable

implicit in [Beeri & Vardi, ICALP 1981]

\[\text{... syntactic restrictions are needed!} \]
Weak-acyclicity

- Graph-based definition - dependency graph

\[p(X, Y) \rightarrow \exists Z p(Y, Z) \]

\[p[1] \xrightarrow{p[2]} \]

\[p[1] \rightarrow \exists Z p(X, Z) \]

- Guarantees termination of the chase \(\Rightarrow\) query answering is decidable

[Fagin, Kolaitis, Miller & Popa, *Theoretical Computer Science 2005*]
Guardedness

- There exists a body-atom that contains all the body-variables

\[\text{employee}(X), \text{supervisorOf}(X,Y), \text{manager}(Y) \rightarrow \text{manager}(X) \]

- Chase has finite treewidth \(\Rightarrow\) query answering is decidable

[Calì, Gottlob & Kifer, KR 2008]
Stickiness

- Join-variables **stick** to the inferred atoms

- Proof-theoretic procedures \Rightarrow query answering is **decidable**

[Calì, Gottlob & P., Artificial Intelligence 2010]
Combining Decidability Paradigms

- **Glut-guardedness** - guard only harmful variables
 [Krötzsch & Rudolph, IJCAI 2011]

- **Weak-stickiness** - only harmful join-variables stick to the inferred atoms
 [Calì, Gottlob & P., Artificial Intelligence 2010]

- **Guardedness + stickiness** - the subject of this work
Guarded \cup Sticky ($G|S$)

- O_g is guarded
- O_s is sticky

O is a $G|S$ ontology
Theorem: Query answering under G|S is undecidable.

Proof: By reduction from query answering under general existential rules.
Source of Undecidability

Guard predicate may store non-treelike structures

\[D = \{ p(a,b) \} \]

\[O = \left\{ \begin{array}{l}
g(X,Y), s(X) \rightarrow s(Y) \\
p(X,Y) \rightarrow \exists z \, p(Y,Z), s(X) \\
s(X), s(Y) \rightarrow g(X,Y) \end{array} \right\} \]
Source of Undecidability

Guard predicate may store non-treelike structures

\[D = \{ p(a, b) \} \]

\[O = \begin{cases}
 g(X, Y), s(X) \rightarrow s(Y) \\
 p(X, Y) \rightarrow \exists z \ p(Y, Z), s(X) \\
 s(X), s(Y) \rightarrow g(X, Y)
\end{cases} \]

\[\text{|nullsOf(chase}(D, O))\text{|-clique} \]

infinite
Taming the Interaction

- tame $G|S$ ontology O
- partition
 - O_{g} is guarded
 - O_{s} is sticky

- unrestricted interaction
- tamed interaction
 - do not feed the guard atom
 - may feed the non-guard atoms

 e.g., predicate-tameness
Taming the Interaction: Decidability

Encode the relevant sticky knowledge into the guarded part

unrestricted interaction → tamed interaction → unrestricted interaction

No interaction
Taming the Interaction: Decidability

unrestricted interaction

\(O_g \)

\(O_s \)

tamed interaction

encode the relevant sticky knowledge into the guarded part

\(O_g \)

\(O_s \)

unrestricted interaction

\(O_g \)

\(O_s \)

no interaction

... but what about the complexity?
The Guarded Case

Guarded Chase Forest

\[D = \{p(a, b), s(b)\} \]

\[O = \left\{ \begin{align*}
p(X, Y), s(Y) & \rightarrow \exists Z p(Z, X) \\
p(X, Y) & \rightarrow s(X)\end{align*} \right\} \]
The Guarded Case

Guarded Chase Forest

\[D = \{ p(a,b), s(b) \} \]

\[O = \{ p(X,Y), s(Y) \rightarrow \exists Z p(Z,X), p(X,Y) \rightarrow s(X) \} \]

restriction to guards and their children

\[
\begin{align*}
p(a,b) & \quad p(a,b) \\
s(b) & \quad s(b) \\
p(z_1,a) & \quad p(z_1,a) \\
s(a) & \quad s(a) \\
p(z_2,z_1) & \quad p(z_2,z_1) \\
s(z_1) & \quad s(z_1) \\
p(z_3,z_2) & \quad p(z_3,z_2) \\
s(z_2) & \quad s(z_2)
\end{align*}
\]

\[
\begin{align*}
p(a,b) & \quad p(a,b) \\
s(b) & \quad s(b) \\
p(z_1,a) & \quad p(z_1,a) \\
s(a) & \quad s(a) \\
p(z_2,z_1) & \quad p(z_2,z_1) \\
s(z_1) & \quad s(z_1) \\
p(z_3,z_2) & \quad p(z_3,z_2) \\
s(z_2) & \quad s(z_2)
\end{align*}
\]
The Guarded Case

Type of an atom

\[\text{type}(\alpha, D, O) = \{ \beta \in \text{chase}(D, O) \mid \text{termsOf}(\beta) \subseteq \text{termsOf}(\alpha) \} \]
The Guarded Case

Type of an atom

\[
\text{type}(\alpha, D, O) = \{ \beta \in \text{chase}(D, O) \mid \text{termsOf}(\beta) \subseteq \text{termsOf}(\alpha) \}
\]
The Guarded Case

An alternating algorithm

- Guess the image of the given query - $p(z_1, c, z_2), s(z_3, z_4), p(z_1, z_3, z_5)$
- Guess the order of null generation - $z_1 \prec z_2 \quad z_1 \prec z_3 \prec z_4 \quad z_1 \prec z_3 \prec z_5$

$q(..., X, ...), t(..., Y, ...) \rightarrow s(X, Y)$

non-guarded
The Guarded Case

An alternating algorithm

- Guess the image of the given query - \(p(z_1,c,z_2), s(z_3,z_4), p(z_1,z_3,z_5) \)
- Guess the order of null generation - \(z_1 \prec z_2 \quad z_1 \prec z_3 \prec z_4 \quad z_1 \prec z_3 \prec z_5 \)
- Universally prove the relevant chase derivations

\[
\begin{align*}
|\text{type}(\alpha, D, O)| & \leq \#\text{pred} \cdot \text{maxarity}^{\text{maxarity}} \\
\Downarrow \\
\text{AEXPSPACE} & = \text{2EXPTIME (combined)} \\
\text{APSPACE} & = \text{EXPTIME (bounded arity)} \\
\text{ALOGSPACE} & = \text{PTIME (data)}
\end{align*}
\]
The Tamed Case - Difficulty I

Determine the subtree of an atom - the type is not enough

\[p_1(b) \]
\[p_4(b, z_1) \]
\[p_5(b, z_1, z_2) \]
\[p_6(z_1, z_3, b) \]
\[p_7(b, z_1, z_3, z_2) \]
\[p_8(b, z_1) \]
\[p_9(z_1, z_4) \]

\[p_3(c, b) \]

\[\rho_1 : p_1(X) \rightarrow \exists Y p_4(X, Y) \]
\[\rho_2 : p_4(X, Y) \rightarrow \exists Z \exists W p_5(X, Y, Z), p_6(Y, W, X) \]
\[\rho_3 : p_5(X, Y, Z), p_8(X, Y) \rightarrow \exists W p_9(Y, W) \]
\[\rho_4 : p_5(X, Y, Z), p_6(Y, W, X) \rightarrow p_7(X, Y, W, Z) \]
\[\rho_5 : p_7(X, Y, Z, W), p_3(V, X) \rightarrow p_8(X, Y) \]
The Tamed Case - Difficulty I

Determine the subtree of an atom - the type is not enough

\[p_1(b) \]
\[p_4(b, z_1) \]
\[p_5(b, z_1, z_2) \]
\[p_6(z_1, z_3, b) \]
\[p_7(b, z_1, z_3, z_2) \]
\[p_8(b, z_1) \]
\[p_9(z_1, z_4) \]

\[p_3(c, b) \]

not in the type of \(p_5(b, z_1, z_2) \)

\[\rho_1 : p_1(X) \rightarrow \exists Y p_4(X, Y) \]
\[\rho_2 : p_4(X, Y) \rightarrow \exists Z \exists W p_5(X, Y, Z), p_6(Y, W, X) \]
\[\rho_3 : p_5(X, Y, Z), p_8(X, Y) \rightarrow \exists W p_9(Y, W) \]
\[\rho_4 : p_5(X, Y, Z), p_6(Y, W, X) \rightarrow p_7(X, Y, W, Z) \]
\[\rho_5 : p_7(X, Y, Z, W), p_3(V, X) \rightarrow p_8(X, Y) \]
The Tamed Case - Difficulty I

Active type of an atom

Lemma: Due to stickiness we can focus on a finite part of size $\#\text{pred} \cdot (\text{maxarity} + 1)^{\text{maxarity}}$.
The Tamed Case - Difficulty II

Order of null generation - mixing of incompatible guarded nulls

$p_1(b) \rightarrow p_4(b, z_1) \rightarrow p_5(b, z_1, z_2)$
$p_6(z_1, z_3, b) \rightarrow p_7(b, z_1, z_3, z_2) \rightarrow p_8(b, z_1) \rightarrow p_9(z_1, z_4)$

$p_3(c, b) \rightarrow p_7(b, z_1, z_3, z_2)$

$p_5(X, Y, Z), p_6(Y, W, X) \rightarrow p_7(X, Y, W, Z)$

sticky (non-guarded) rule
The Tamed Case - Difficulty II

Order of null generation - mixing of incompatible guarded nulls

$p_1(b)$
$p_4(b, z_1)$
$p_5(b, z_1, z_2)$
$p_6(z_1, z_3, b)$
$p_7(b, z_1, z_3, z_2)$
$p_8(b, z_1)$
$p_9(z_1, z_4)$

$p_3(c, b)$

$p_5(X, Y, Z)$, $p_6(Y, W, X) \rightarrow p_7(X, Y, W, Z)$

sticky (non-guarded) rule

...mixing of guarded and sticky nulls
The Tamed Case - Difficulty II

Backward resolution steps (sticky steps)

\[p_5(b, z_1, z_2) \]

\[p_6(b, z_1, z_3) \]

\[p_7(b, z_1, z_3, z_2) \]

\[p_5(X, Y, Z), p_6(Y, W, X) \rightarrow p_7(X, Y, W, Z) \]
The Tamed Case

A (hybrid) alternating algorithm

• Guess the image of the given query - \(q(z_1, z_2, c, z_3), p(z_1, z_3, z_4) \)
• Guess a partition of nulls into sticky and guarded
• Guess the order of guarded null generation - \(z_1 \prec z_2 \quad z_1 \prec z_3 \prec z_4 \)
The Tamed Case

A (hybrid) alternating algorithm

- Guess the image of the given query \(- q(z_1, z_2, c, z_3), p(z_1, z_3, z_4)\)
- Guess a partition of nulls into sticky and guarded
- Guess the order of guarded null generation \(- z_1 \prec z_2 \prec z_1 \prec z_3 \prec z_4\)
- Universally prove the relevant chase derivations (guarded + sticky steps)

\[
\begin{align*}
|\text{atype}(\alpha, D, O)| & \leq \#\text{pred} \cdot (\text{maxarity} + 1)^{\text{maxarity}} \\
\Downarrowおる \uparrow
\end{align*}
\]

Theorem: Query answering under tame $G\mid S$ is in:

- $\text{AEXPSPACE} = 2\text{EXPTIME}$ (combined)
- $\text{APSPACE} = \text{EXPTIME}$ (bounded arity)
- $\text{ALOGSPACE} = \text{PTIME}$ (data).
Overview

- **Glut-guardedness** - guard only harmful variables
 [Krötzsch & Rudolph, IJCAI 2011]

- **Weak-stickiness** - only harmful join-variables stick to the inferred atoms
 [Cali, Gottlob & P., Artificial Intelligence 2010]

- **Tameness** - sticky rules do not feed the guard atom
 [this work]
Next Step: Datalog Rewriting

Towards practical query answering algorithms
Thank you!