
A Declarative Approach
to Distributed Computing:

Specification, Execution & Analysis

Jiefei Ma, Franck Le, David Wood

Alessandra Russo, Jorge Lobo

Imperial College, IBM, ICREA -Univeristat Pomeu Fabra

Path-vector Routing Table

2

a b c d

Destination SPath

b [b]

c [c]

d [c,d]

Distance -vector Routing Table

3

a b c d
1 1 1

3

Destination Next Hop

b b

c b

d b

Path-vector Routing Table

4

a b c d

Destination SPath

b [b]

c [c]

d [c,d]

path(S,D,[S,D],1) : - link(S,D).
path(S,D,[S|P],C+1) : -
 link(S,Z), path(Z,D,C),
 S=/=D, S not in P.
bestCost(S,D,min<C>) :-
 path(S,D,P,C).
routeTable(S,D,SPath) : -
 bestCost(S,D,C),
 path(S,D,SPath,C).

Declarative Networking

5

a b c d

Destination SPath

b [b]

c [c]

d [c,d]

path(@S,D,[S,D],1) : - link(@S,D).
path(@S,D,[S|P],C+1) :-
 link(@S,Z), path(@Z,D,C),
 S=/=D, S not in P.

Declarative Networking

6

a b c d

Destination SPath

b [b]

c [c]

d [c,d]

path(@S,D,[S,D],1) : - link(@S,D).
path(@S,D,[S|P],C+1) :-
 link(@S,Z), path(@Z,D,C),
 S=/=D, S not in P.

Copying the program in each node,
doing a bottom -up computation and
placing the ground atoms in the right
location, the network eventually
computes all the paths.

Declarative Networking

7

a b c d

Destination Path

b [b]

c [c]

d [c,d]

link r (@Z,S) :- link(@S,Z).
path(@S,D,[S,D],1) : - link(@S,D).
path(@S,D,[S|P],C+1) : -
 link r (@Z,S), path(@Z,D,C),
 S=/=D, S not in P.

By re -writing the rules,
implementations may decide where

rule bodies are evaluated

Declarative Networking

8

a b c d

Destination SPath

b [b]

c [c]

d [c,d]

The distributed evaluation of these
rules is more complicated ð How long

should a node wait before it can
compute the aggregation?

bestCost(@S,D,min<C>) :-
 path(@S,D,P,C).
routeTable(@S,D,P) :-
 bestCost(@S,D,C),
 path(@S,D,P,C).

Declarative Networking

9

a b c d

Destination SPath

b [b]

c [c]

d [c,d]

And, in general, changes of state
needed to be captured when there

are changes in the topology are
captured outside logic

10

Our Approach: Distributed State Machine

Application node

D. State
Machine

Application node

D. State
Machine

Application node

D. State
Machine

Application node

D. State
Machine

Application node

D. State
Machine

Application node

D. State
Machine

Application node

D. State
Machine

Application node

D. State
Machine

11

Application code

Transition function F

An Application Node

Data
(State)

Messages Messages

An I/O automaton defined using a dialect of C+ in which
ÅStates: are sets of fluents
ÅMessages and Application Input: are two disjoint sets of
actions called communication and input actions respectively

And F is defined using static , dynamic and communication laws

input

12

A Voting Algorithm Example

ÅEach node has an initial opinion of either good (blue) or bad (red)
ÅNodes communicate their opinions to their neighbors
ÅNode switches opinion if the majority of nodes in the neighborhood
are of the opposite opinion
ÅAnd informs of the change to the neighbors
ÅRepeat

13

Voting DSM (i) Schema
caused neighbour_opinion(X, O) after send_vote (O, X, i).

caused neighbour_opinion(X, OldO) after

 neighbour_opinion(X, OldO), not send_vote (AnyO, X, i).

caused num_bad(#count<X>) if neighbour_opinion(X, bad).

caused num_good(#count<X>) if neighbour_colour(X, good).

caused my_opinion(bad) if

 num_bad(B), num_good(G), B >= G.

caused my_opinion(good) if

 num_bad(B), num_good(G), B < G.

sent send_vote (O, i, X) if

 my_opinion(O) , neighbour(X),

 after my_opinion(OldO), O != OldO.

14

Connecting DSMs
ÅI/O automaton composition : a

composition is realized by identifying
actions in different automata with the
same name as the same action, and
compositions are allowed if the automata
are compatible .

ÅA collection of automata is compatible iff
all the set of output actions are pair -wise
disjoint

15

Voting DSM (i) Schema
caused neighbour_opinion(X, O) after receive_vote (O, X, i).

caused neighbour_opinion(X, OldO) after

 neighbour_opinion(X, OldO), not receive_vote (AnyO, X, i).

caused num_bad(#count<X>) if neighbour_opinion(X, bad).

caused num_good(#count<X>) if neighbour_colour(X, good).

caused my_opinion(bad) if

 num_bad(B), num_good(G), B >= G.

caused my_opinion(good) if

 num_bad(B), num_good(G), B < G.

sent send_vote (O, i, X) if

 my_opinion(O) , neighbour(X),

 after my_opinion(OldO), O != OldO.

16

Connecting DSMs
Encoding of synchronous reliable communication:

sent receive_vote (V,X,S) after send_vote (V,S,X).

Encoding of unreliable communication:

inertial values(Val).

initially values(succeds), values(fails).

caused comm(#chooce<Val>) if values(Val).

sent receive_vote (V,X,i) if comm(succeeds)

 after send_vote (V,i,X).

17

Specification, Execution and Framework

Declarative Protocol Specification

Deployment,

Execution

Setup environment, e.g., DSM

Flawed specification
results in slow, non -

functional or insecure
network

Protocol Model

Communication Model

Initial Network

Configuration Queries

Theorem Prover

Simple and direct
translation between

declarative specification
and Datalog+Time
(representing the
semantics of the

protocol)

abstraction

Synchronous or
Asynchronous? Reliable?

Fair?

Network topology?
(Configuration/Security)

policies?

Convergent? Devoid of
forwarding loops?

Discover multi -paths?

Query answers as logic
models, in which

execution traces can be
extracted.

Logic

Program

Synchronous Sample Statistics

18

For Voting Example

19

